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The mechanics and materials community lost a
search leader and a national advocate for the di
plines. Owen Richmond died April 17, 2001, in Pitt
burgh, PA, following a battle with pulmonary fibrosis
a degenerative lung condition. Owen had an impact
applied mechanics and its application to materi
property determination, description, and materials p
cessing. He had a clear vision of the whole of mech
ics and materials and the ability to use that vision
extend the realm of the possible. But, more importa
Owen was a positive influence on the lives of tho
who were fortunate enough to know him.

Owen was born on April 1, 1928, in Geneva, IL. H
birth date was a source of amusement to him. He wo
remark that he could be viewed as an ‘‘April Fool.’’ H
was far from that. Owen grew up in Wasco, IL, a sm
community west of Chicago. He carried the traits of h
Midwestern roots with him throughout his life. He wa
thoughtful and determined. Owen was also a warm a
generous person. He was always willing to share
ideas and to help others understand complicated
chanics and materials problems. Owen was a cons
source of encouragement and enthusiasm for youn
colleagues in both academia and industry. He enco
aged them to develop their own vision and voice and
use it to identify research areas that would have r
impact. He took great pleasure in helping colleagues
establish a research presence or to obtain a gran
pursue an idea. Owen was a facilitator.

Owen graduated from Bradley University, Peor
IL, in 1949 with a degree in general engineering. P
haps it was this initial training in general engineerin
that set the course for his future vision of mechan
and materials. Owen continued his education at
University of Illinois, Urbana, IL. He received his M
S. degree in Civil Engineering in 1950. As part of h
graduate program, Owen was required to write a
search paper. Having grown tired of drafting and d
sign codes, he wrote a paper entitled ‘‘Atomic Theo
of Strength of Materials.’’ After graduation, he had th
opportunity to pursue an interest in architecture w
the firm of Emerson, Gregg, and Briggs in Peoria.

The Korean War interrupted Owen’s civilian eng
neering career. He was drafted into the Army a
taught recruits how to tie knots at Fort Belvoir, VA
Owen attributed this experience to awakening his int
est in topology. The Research and Development La
ratory at Fort Belvoir was looking for a person to in
vestigate the effects of atomic blasts on structu
designed to protect people. Owen got the job.
would remark that this was the result of having t
right words on his resume. Owen continued to work
a civilian employee on this project for two years aft
his discharge. He participated in several tests of str
tures at the Nevada Test Site. This marked the beg
nings of Owen’s interest in the connection of desi
and theory to experimentation.

In the fall of 1954, Owen returned to academic pu
suits. He began his Ph.D. studies at The Pennsylva
State University in engineering mechanics. Ow
worked on the application of plasticity theory to me
alworking. He was awarded the degree in 1958 with
thesis entitled ‘‘A Hyperbolic Theory of Plasticity.’’
This work marked the beginning of a long interest
using Tresca-type material descriptions to solve pr
of Applied Mechanics
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lems in metalworking. Owen also used numeric
methods to investigate this problem. This may ha
been the only time that he actually computed resu
Owen was not averse to computing; he was sim
willing to allow others the enjoyment of doing th
computation.

October 1957 marked the beginning of a 25-year
reer with U.S. Steel’s Research Laboratory in Monr
eville, PA. Owen began as a scientist in the Mechani
Metallurgy section. He participated in fundamental r
search on the structure of materials, material desi
behavior, and performance. Owen was able to use
skills in mechanics to address problems that aided
advancement of these investigations. Owen desig
and analyzed experiments on the creep and the st
relaxation of metals. This work sparked his interest
developing constitutive equations that incorporated
underlying mechanisms responsible for the deform
tion. It also increased his resolve that good theory a
good experiments go hand in hand.

Owen also believed that fundamental work should
motivated by, and connected to, problems of industr
importance. His early work on wire drawing was th
result of this belief. Owen developed a theory
streamlined dies. These die shapes produced prod
that had zero redundant work during deformation a
produced wire with increased performance. This w
demonstrated in careful experiments with colleagu
The theory was predicted on Tresca’s theory of yie
and low for a perfectly plastic material. Owen viewe
the Tresca model for materials behavior as a hom
enization of Schmid’s Law for a crystal with an infinit
of slip systems or a polycrystalline material with ra
domly oriented small crystals. Owen used this initi
work to develop a theory of ideal forming. Ideal form
ing uses material models and deformations that requ
minimum work or energy of deformation. This was a
area of increasing importance to Owen in later years
one of his last conversations, Owen remarked that n
that he was retired, he was forming a company to d
velop and market ideal forming tools.
NOVEMBER 2001, Vol. 68 Õ 825
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826 Õ V
Owen also began thinking about the relationship b
tween chemical and mechanical interactions in mat
als. This work was motivated by a problem of residu
stress formation from species diffusion. Out of th
work came other work dealing with lattice strains pr
duced by solutes and the beginnings of chemic
mechanical integration. This formed the basis of a p
gram on alloy design that included both mechani
and chemical interactions.

Owen was active in the academic community
well. He taught courses in elasticity and plasticity
Carnegie Institute of Technology~Carnegie Mellon
University!. Here, he developed friendships and col
gial associations that lasted for decades. He also s
an industrial sabbatical leave, 1962–1963, as a visit
scientist in the Department of Mechanical Engineeri
at Stanford University. Owen developed a strong se
that universities and industry needed to collaborate,
that out of these collaborations, synergies would d
velop that were beneficial to both groups. He collab
rated with a number of institutions both nationally an
internationally throughout his career.

In 1966, Owen was asked to organize the Mecha
cal Sciences Division of US Steel’s Edgar C. Ba
Laboratory for Fundamental Research. He assemble
team of researchers consisting of materials scienti
experimental and applied mechanicians, and mathe
ticians. Owen was a consummate manager. He o
remarked that his father had told him ‘‘Always try t
say yes, then your no’s will mean so much more
Owen provided the guidance and resources for his c
leagues to do research that was both interesting
meaningful to the corporation. Out of this environme
came fundamental work on the pressure dependenc
yielding in metals, the non-normality of plastic flow
the localization of deformation into shear bands, t
flow of granular materials, crazing in polymers, bas
understanding of the development of stress and air
formation in casting, tribological studies of interface
finite strain elastoplastic analyses of forming process
and quantitative descriptions of material structure a
failure. Through all of this work, Owen was a force
developing theories and corroborating them with e
perimental findings.

Owen joined the staff of the Alcoa Technical Cent
in 1983 and was quickly promoted to a Senior Fello
He took this position after considering opportunities
academia. He felt that the industrial research laborat
afforded him a greater opportunity to strengthen int
disciplinary research efforts in materials and mech
ics. The position would also allow opportunities to in
tegrate research across pertinent length scales to pr
material properties. Owen received the singular disti
tion of being named Corporate Fellow and laborato
director in charge of basic research. Under Owe
leadership, Alcoa began and strengthened research
grams for atomic-scale simulation of materials, proce
tribology, polymer processing, composite processi
laser processing of materials, process metallurgy,
deformation process modeling.

Owen’s interests returned to a focus of his early c
reer, design. He initiated a program to strengthen a
incorporate a comprehensive view of materials a
product design. The outgrowth of this effort was h
view that products should be designed by consider
process, structure, properties, and also performa
ol. 68, NOVEMBER 2001
-
i-
l

-
-
l

nt
g

e
d
-
-

-

a
s,
a-
e

l-
d

of

p

s,
d

-

y
-
-

ict
-

o-
s
,
d

-
d

g
e.

This introduced a product’s life cycle into the desig
process. Owen viewed this as an optimization probl
and talked about a holistic physico-economic des
process. He had hoped to develop these ideas i
monograph.

Owen was instrumental in organizing the Alco
Technical Symposia celebrating the centenary of
founding of Alcoa in 1888. These symposia broug
together researchers from around the world to disc
problems that had impact on the materials indust
Owen retired from the Technical Center in Decemb
1998.

Owen received several significant awards during
career. In 1989, he received the Francis Frary Awa
from Alcoa Chairman Paul O’Neill for his outstandin
contributions to Alcoa science and engineering. Ow
received the 1990 ASME Applied Mechanics Divisio
Award for his work in advancing the discipline of ap
plied mechanics. ASME again recognized Owen
1994 with the Nadai award for this contributions to th
advancement of materials engineering in the areas
processing, casting, the effects of pressure on yieldi
and the fostering of collaboration between industry a
academia. In 1993, Owen’s alma mater, Penn St
honored him with its highest award, the Outstandi
Engineering Alumni of the Engineering Science a
Mechanics Department. Owen was elected to the U
National Academy of Engineering in 1997. Owen al
served as an industrial advisor to several prominent
search universities in the U.S.

Owen took his science seriously, but not too se
ously. One fall afternoon, a memorandum arrived
mailboxes across the Technical Center. It was writt
in Owen’s all too familiar hand. The memo began
describe the construction of Voronoi tessellations. T
is a topological idea that Owen had adopted to descr
the distribution of particles and voids in material
However, the application was to the raking of leav
that had fallen in his yard. Once again, Owen had se
an application that was beyond the norm.

Owen was looking forward to spending more tim
with his wife, Ann, and his four children in retiremen
He especially wanted to spend time with his sev
grandchildren. Owen was an avid baseball fan and s
porter of the Chicago Cubs. He planned a family r
union at Garfield Farm, La Fox, IL, in 2000 to coincid
with his golden wedding anniversary and a Cubs’ hom
stand. Upon examining the Cubs’ web site for the da
of the reunion, he thought the series was sold out.
contacted a number of friends to see if the Cubs’ fro
office could be persuaded to find tickets for him and t
grandchildren. Later he discovered that it was only t
bleachers that were sold out. Owen was devoted to
favorite sport, his family, and his grandchildren.

Owen’s scientific achievements are impressive, b
even more impressive were his human qualities.
was a deeply moral man but never overbearing.
cared about people and about using mechanics to m
people’s lives better. He was also a dear friend
many.

He will be missed.

R. E. Smelser, University of Idah
L. Anand, Massachusetts Institute of Technolo
L. G. Hector, Jr., GM Research & Developme
Transactions of the ASME
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Nonlinear Stability of Circular
Cylindrical Shells in Annular
and Unbounded Axial Flow
The stability of circular cylindrical shells with supported ends in compressible, invis
axial flow is investigated. Nonlinearities due to finite-amplitude shell motion are con
ered by using Donnell’s nonlinear shallow-shell theory; the effect of viscous struc
damping is taken into account. Two different in-plane constraints are applied at the
edges: zero axial force and zero axial displacement; the other boundary condition
those for simply supported shells. Linear potential flow theory is applied to describe
fluid-structure interaction. Both annular and unbounded external flow are considere
using two different sets of boundary conditions for the flow beyond the shell length:
flexible wall of infinite extent in the longitudinal direction, and (ii) rigid extensions of
shell (baffles). The system is discretized by the Galerkin method and is investigat
using a model involving seven degrees-of-freedom, allowing for traveling-wave resp
of the shell and shell axisymmetric contraction. Results for both annular and unbou
external flow show that the system loses stability by divergence through strongly su
cal bifurcations. Jumps to bifurcated states can occur well before the onset of insta
predicted by linear theory, showing that a linear study of shell stability is not sufficien
engineering applications.@DOI: 10.1115/1.1406957#
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1 Introduction
The theories available for the stability of circular cylindric

shells in unbounded air flow do not agree sufficiently well w
the experimental results, as pointed out by Horn et al.@1#, and
even today no satisfactory design criterion is available. Moreo
for subsonic Mach numbers, highly divergent and catastrop
instabilities occurred in experiments with clamped-clamped c
per shells in fully developed turbulent flow~@1#!. On the other
hand, Paı¨doussis and his co-workers developed several linear
oretical models, first for inviscid annular flow~@2,3#! and then for
viscous annular flow~@4,5#!. Additional results for inviscid annu-
lar flow were obtained by Hora´ček @6#. However, experiments
with rubber shells in annular air flow~@7#! show that the onset o
instability ~divergence! predicted by linear theory is not conserv
tive, by a margin of more than 30 percent for clamped-clamp
shells. Since the fluid-structure interaction models used in
study of Paı¨doussis and his co-workers are fairly accurate,
reason for disagreement between theoretical and experimenta
sults is suspected to be associated with the use of linear theo
the modelling of shell deformations. This is a common limitati
of almost all the previous studies. In fact, experiments show
divergence of shells with supported ends involves deformation
least of the order of the shell thickness. For such deformatio
geometric nonlinearities must be taken into account.

Only a few researchers used a geometrically nonlinear s
model to investigate the aeroelastic stability of cylindrical she
in axial flow, but in all cases the flow considered was superso
These studies are due to Librescu@8,9#, Olson and Fung@10#, and
Evensen and Olson@11#, and they utilized simple modal expan
sions that were incapable of completely describing the nonlin

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2000; final revision, May 10, 2001. Associate Editor: D. A. Siginer. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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behavior of a circumferentially closed shell. A literature review
work on nonlinear dynamics of shellsin vacuoand filled with or
surrounded by quiescent fluid is given by Amabili et al.@12# and
will not be repeated here. One important conclusion reache
that study, however, is the following: Since most analyses invo
some kind of Galerkin-type expansion, the choice of appropr
comparison functions is as always important, but in the case
nonlinear shell motions it iscrucial, for the presence of opposin
effects due to quadratic and cubic nonlinearities.

The nonlinear stability of supported, circular cylindrical she
in compressible, inviscid axial, subsonic flow is investigated
the present study for the first time. The present approach is b
on the geometrically nonlinear shell model developed by Ama
et al. @13# to study stability of shellscontaining incompressible
flow.

2 Equation of Motion and Boundary Conditions
A cylindrical coordinate system (O;x,r ,u) is chosen, with the

origin O placed at the center of one end of the shell. The displa
ments of points in the middle surface of the shell are denoted bu,
v and w, in the axial, circumferential, and radial directions, r
spectively. Using Donnell’s nonlinear shallow-shell theory, t
equation of motion for large amplitude transverse vibrations o
very thin, circular cylindrical shell is given by~@13#!

D¹4w1chẇ1rhẅ5 f 1P1
1

R

]2F

]x2 1
1

R2 S ]2F

]u2

]2w

]x2

22
]2F

]x]u

]2w

]x]u
1

]2F

]x2

]2w

]u2 D , (1)

whereD5Eh3/@12(12n2)# is the flexural rigidity,E is Young’s
modulus,n the Poisson ratio,h the shell thickness,R the mean
shell radius,r the mass density of the shell,c the damping param-
eter,P the radial pressure applied to the surface of the shell by
external flowing fluid, andf a possible, external radial excitatio
~f 50 is taken in most of the present study!. The radial deflection
w is positive inward, the overdot denotes a time derivative anF
is the in-plane Airy stress function, given by

0,
on
tment
nd

he
001 by ASME NOVEMBER 2001, Vol. 68 Õ 827
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1

R

]2w

]x2 1
1

R2 F S ]2w

]x]u D 2

2
]2w

]x2

]2w

]u2 G . (2)

In Eqs. ~1! and ~2!, the biharmonic operator is defined as¹4

5@]2/]x21]2/(R2]u2)#2. Donnell’s nonlinear shallow-shel
equations are accurate only for modes of high circumferen
wave numbern; specifically, 1/n2!1 must be satisfied, so thatn
>5 is required in order to have fairly good accuracy. Donne
nonlinear shallow-shell equations are obtained by neglecting
in-plane and rotary inertia and transverse shear deformation,
ing accurate results only for very thin shells, i.e.,h!R. In-plane
displacements are infinitesimal, i.e.,uuu!h, uvu!h, while w is of
the same order of the shell thickness; the curvature change
expressed by linear functions ofw only.

In this study, attention is focused on both~i! a finite, simply
supported, circumferentially closed circular cylindrical shell
lengthL, and ~ii ! an infinitely long shell, periodically supported
In the latter case, the portion of the shell considered lies betw
two supports,L apart, while the effect of the part of the she
beyond is only considered as a constraint; only modes that
antisymmetric with respect to each support are considered in
case~lower frequency modes!.

In both cases the following boundary conditions must be sa
fied:

w50 and Mx52D$~]2w/]x2!1n@]2w/~R2]u2!#%50

at x50,L, (3)

whereMx is the bending moment per unit length. Two differe
in-plane boundary conditions are considered:

Case 1: Nx50 at x50,L and v50 at x50,L,
(4a)

Case 2: u50 at x50,L and v50 at x50,L; (4b)

moreover,u, v, and w must be continuous inu. The flexural
deformationw is expanded by using the linear shell eigenmod
for zero flow as the base; in particular, the flexural response w
n nodal diameters andm longitudinal half-waves can be written a
follows ~@13#!:

w~x,u,t !5 (
m51

2

@Am,n~ t !cos~nu!1Bm,n~ t !sin~nu!#sin~lmx!

1 (
m51

3

A~2m21!,0~ t !sin~l~2m21!x!, (5)

wherelm5mp/L andt is the time;Am,n(t), Bm,n(t) andAm,0(t)
are unknown functions oft. Equation~5! was obtained by suppos
ing that the nonlinear interaction among ‘‘linear modes’’ of t
chosen base involves only the asymmetric modes (n.0) having a
given n value, and axisymmetric modes (n50) with an oddm
value. Only asymmetric modes with one and two axial half-wa
are included; additional modes increase the accuracy of the an
sis. Axisymmetric modes are fundamental for describing the n
linearity correctly.

3 Fluid-Shell Interaction
The shell is considered immersed in annular compressible fl

flow, limited by an external rigid cylinder of radiusR1 ; the case
of a radially unbounded external fluid is obtained in the limit
R1→`. The cases withR1,R ~internal annular flow! and R1
→0 ~internal flow! are also described by the present model. T
fluid-structure interaction is described by linear potential flo
theory; thus, the fluid is assumed to be inviscid, and the fl
isentropic and irrotational. The effect of fluid flow nonlinearitie
has been found to be negligible in Ref.@14#. In contrast, viscous
effects can be significant, especially for annular flow in narr
gaps~@4,5#!. Gravity effects, such as prestress in the shell due
828 Õ Vol. 68, NOVEMBER 2001
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the fluid weight, are neglected. The irrotationality property is t
condition for the existence of a scalar potential functionC from
which the velocity may be written as

v52¹C52¹~2Ux1F!. (6)

In Eq. ~6! the potentialC is assumed to comprise two compo
nents: The first one due to the mean flow associated with
undisturbed axial flow velocityU, and the second one is the un
steady perturbation potentialF associated with shell motion. Fo
small perturbations,F must satisfy

¹2F2
1

c2 S ]2F

]t2 12U
]2F

]t]x
1U2

]2F

]x2 D50, (7)

wherec is the sound speed in the fluid, and the Laplace opera
in cylindrical coordinates is

¹2F5
]2F

]x2 1
]F

]r 2 1
1

r]

]F

]r
1

1

r 2

]2F

]u2 50.

The perturbed pressureP may be related to the velocity potentia
by Bernoulli’s equation for unsteady fluid flow; hence we c
write ~@2#!

P5 P̄1p5 P̄1rFS ]F

]t
1U

]F

]x D , (8)

whereP̄ is the mean pressure,p is the perturbation pressure, an
rF is the fluid mass density.

3.1 Model With Separation of Variables. The fluid do-
main is assumed to be an annular cylinder of infinite extent in
axial direction, delimited internally by a periodically supporte
shell of infinite length and externally by a rigid cylinder, so that
is possible to employ the method of separation of variables
obtain the velocity potential. Here the mathematical trick is
consider the functionw and the fluid domain defined for anyx
P(2`,`). This means thatw is a periodic function with main
period 2L, and the same is satisfied for the velocity potential a
the perturbation pressure. This type of solution was used by P¨d-
oussis and Denise@15# for shells with incompressible flow, eithe
internal or external. If there is no cavitation, at the fluid-sh
interface we can write

S ]F

]r D
r 5R

5S ]w

]t
1U

]w

]x D , (9)

and at the fluid/rigid-cylinder interface

S ]F

]r D
r 5R1

50. (10)

The problem is solved by separation of variables, and the pe
bation pressure at the shell wall is given by

pr 5R5rF

Kn8~mR1!I n~mR!2I n8~mR1!Kn~mR!

m@Kn8~mR1!I n8~mR!2I n8~mR1!Kn8~mR!#

3S ]

]t
1U

]

]xD 2

w, (11)

wherem25a22(U/c)2@a1(v/U)#2, a5mp/L, I n andKn are
the modified Bessel functions of ordern of first and second kind,
respectively. For flow unbounded in the radial direction (R1
→`), Eq. ~11! simplifies to

pr 5R5rF

Kn~mR!

mKn8~mR!
S ]

]t
1U

]

]xD 2

w. (12)

3.2 Fourier Transform Model. This model was applied by
Dowell and Widnall@16# to evaluate unsteady aerodynamic forc
on shells in axial flowing fluid and extended to annular compre
ible flow by Paı¨doussis et al.@2#. In this case, rigid baffles~exten-
sions!, of the same external diameter as the shell, limit interna
~in the radial direction! the fluid domain; these baffles are inde
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i

ed
nitely long in the axial direction and are connected to the sh
one atx50 and the other atx5L. Externally, the fluid domain is
confined by a rigid cylinder atr 5R1 .

Assuming no cavitation, the boundary condition at the flu
shell interface is

S ]F

]r D
r 5R

5S ]w

]t
1U

]w

]x D for 0<x<L,

(13)
50 for x,0 and x.L
e

t

-
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ell,
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and at the fluid/rigid-cylinder interface

S ]F

]r D
r 5R1

50. (14)

Assuming w5A(t)sin(mpx/L)cos(nu) and noting that all the
terms in the assumed mode expansion ofw may be written in
similar form, the perturbation pressure at the shell wall is obtain
by using Fourier transform~@2#!
pr 5R5rF

L

2
cos~nu!E

2`

` m@12~21!me2 j aL#

m2p22a2L2

Kn8~mR1!I n~mR!2I n8~mR1!Kn~mR!

m@Kn8~mR1!I n8~mR!2I n8~mR1!Kn8~mR!#
@Ä~ t !12 j aUȦ~ t !2a2U2A~ t !#ej axda

(15)
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wherea is the transform variable,j 5A21 andm has been de-
fined in Section 3.1. The expression forp for unbounded flow is
immediately obtainable by substituting the appropriate functio
of Bessel functions, similarly to Eqs.~11! and ~12!.

4 Airy Stress Function and Solution
The expansion used for the transverse displacementw satisfies

identically the boundary conditions given by Eqs.~3!; moreover, it
satisfies exactly the continuity of circumferential displacem
~@13#!,

E
0

2p ]v
]u

du50. (16)

The boundary conditions for either set of Eqs.~4! give compli-
cated expressions when transformed into equations involvingw.
Therefore, they are modified into simpler integral expressions
satisfy Eqs.~4! on the average~@17#!, namely

E
0

2p

NxRdu50, at x50,L ~Case 1! (17a)

E
0

2pE
0

L ]u

]x
dxRdu5E

0

2p

@u~L,u!2u~0,u!#Rdu

50; ~Case 2! (17b)

and in both cases

E
0

2pE
0

L

NxudxRdu50. (18)

Equation~17a! assures a zero axial forceNx on the average atx
50, L, while Eq.~17b! states that the axial displacementu is zero
on the average atx50, L. Equation~18! is satisfied whenv50 on
the average atx50, L and u is continuous inu on the average.
Replacement of Eqs.~4! by ~17! and~18! simplifies computations,
but it introduces an approximation~boundary conditions are ex
actly satisfied atn discrete points, wheren is the number of cir-
cumferential waves!.

Substituting the expansion ofw, Eq. ~5!, in the right-hand side
of Eq. ~2!, a partial differential equation for the stress functionF
is obtained, the solution of which may be written as

F5Fh1Fp , (19)

whereFh is the homogeneous andFp is the particular solution.
The latter is given by
nal

nt

hat

Fp5 (
m50

M

(
n50

N

$@F1mn cos~nu!1F2mn sin~nu!#sin~lmx!

1@F3mn cos~nu!1F4mn sin~nu!#cos~lmx!%, (20a)

where the functions of timeF jmn , j 51, . . . 4, aregiven in Am-
abili et al.@13#. The homogeneous solution may be assumed to
of the form ~@12,13,18#!

Fh5
1

2
N̄xR

2u21
1

2
x2H N̄u2

1

2pRL E0

LE
0

2pF]2Fp

]x2 GRdudxJ
2N̄xuxRu, (20b)

whereN̄x , N̄u , andN̄xu are the average in-plane force resultan
~per unit length!, as a consequence of the in-plane constraints
the average, defined as

N̄#5
1

2pL E0

2pE
0

L

N#dxdu, #5x,u,xu. (21)

Equation ~20b! is chosen so as to satisfy on the average
boundary conditions imposed. Boundary conditions~17,18! allow
us to express the in-plane restraint stressesN̄x , N̄u , and N̄xu in
terms ofw and its derivatives.

By using the Galerkin method, seven second-order ordin
coupled nonlinear differential equations are obtained for the v
ables A1,n(t), B1,n(t), A2,n(t), B2,n(t), A1,0(t), A3,0(t), and
A5,0(t), by successively weighting the original Eq.~1! with the
functions that describe the shape of the seven modes retaine
Eq. ~9!. The Galerkin projection of Eq.~1! has been performed by
using theMathematicacomputer software.

5 Numerical Results for Annular Air Flow
Numerical results were obtained for a case already theoretic

~with a linear theory! and experimentally studied by one of th
authors~@7#!: a circular cylindrical shell made of rubber, in annu
lar incompressible air-flow, withR50.0247 m, L/R55.5, h/R
50.05, R1 /R51.25, E52.433106 Pa, r51220 kg/m3, rF

51.25 kg/m3, and n50.47. Supports at both ends approximat
clamped ends. The static pressure inside and outside the shel
equal during experiments, so thatP̄50 has been taken; the adde
mass effect of stationary air inside the shell is taken into acco
even if small. A modal damping coefficientz5chpL/(v1,nm1)
50.01 is assumed, wherev1,n is the linear natural frequency o
the first asymmetric longitudinal mode at zero flow veloc
(v1,n5280.21 for the separation-of-variables fluid model a
279.58 rad/s for the Fourier model! and
NOVEMBER 2001, Vol. 68 Õ 829
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m15rShpL/21rFp~L/2!

3H Kn8~mR1!I n~mR!2I n8~mR1!Kn~mR!

m@Kn8~mR1!I n8~mR!2I n8~mR1!Kn8~mR!#
1

I n~mR!

mI n8~mR!J
for the separation-of-variables fluid model; an analogous exp
sion of m1 is obtained for the Fourier transform model. For th
case the shell is extremely flexible and the difference betw
simply supported and clamped edges is small; in this numer
simulation, simple supports are assumed at the shell endsNx
50). The system is studied for the circumferential wave num
n53, which is associated with the lowest flow velocity for inst
bility, according to experiments. This value is strictly outside t
usual range of applicability of Donnell’s shallow-shell theoryn
>5); however, results are of interest for possible comparison w
experiments.

Results obtained by linearizing the equations of motion
shown in Fig. 1 for both fluid-structure interaction models; ze
structural damping is initially assumed. The natural frequencie
the first two modes are givenversusthe flow velocity. Increasing
the flow velocity from zero, the modes become complex. T
shell loses stability by divergence atU>80 m/s; the buckled
shape displays two longitudinal half-waves. Beyond this point,
shell remains unstable; no restabilization is observed. Results
tained with the two different models of fluid-structure interacti
are quite close. The less conservative separation-of-varia
model will be used in the studies that follow.

Experimental results in El Chebair et al.@7# are in good agree-
ment with the linear theoretical results at zero flow velocity. Ho
ever, experiments show violent divergence at 49 m/s, i.e.,well
before the value predicted~>80 m/s!, accompanied by large de
formation of the shell. Moreover, the shape of the buckled she
49 m/s shows one axial half-wave~n53; m51!, very large de-
formation and contraction of the circumference in a cross sec
of the shell. Even if the effect of viscosity is included in the mod
~@7#!, the theoretical predictions are significantly larger than
perimental results.

5.1 Nonlinear Results. Results in this section have bee
computed with the separation-of-variables flow model and w
modal dampingz50.01. Solutions of the nonlinear equations
motion have been obtained numerically by using the softw
Auto ~@19#! and direct integration of the equations of motion. N
periodic solutions have been found, which agrees with the exp
mental results. In particular, two types of static solutions~diver-
gence! have been detected:~i! solutions of the typeB1,n /A1,n
52B2,n /A2,n , i.e., when the first and second asymmetric lon
tudinal modes are in antiphase inu ~i.e., they are described by th
same function inu!, and ~ii ! solutions of the typeB1,n /A1,n
52A2,n /B2,n , i.e., when the first and second asymmetric lon

Fig. 1 Frequency obtained from the linearized equations with-
out viscous damping „zÄ0… versus the flow velocity: , fluid
model with separation of variables; , fluid model with
Fourier transform method
830 Õ Vol. 68, NOVEMBER 2001
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Fig. 2 Amplitude of nonoscillatory solutions versus the flow
velocity „rubber shell …; in-antiphase modes. , stable
branches; , unstable branches. „a… Amplitude of the first
longitudinal mode A 1,n Õh ; „b… amplitude of the second longitu-
dinal mode A 2,n Õh ; „c… amplitude of the first axisymmetric
mode A 1,0 Õh ; „d… amplitude of the third axisymmetric mode
A 3,0 Õh ; „e… amplitude of the fifth axisymmetric mode A 5,0 Õh .
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tudinal modes are orthogonal inu. When all seven generalize
coordinates are retained in the equations of motion, the sys
does not possess a preferential angular coordinateu to locate the
deformation.

In Figs. 2 and 3 the various branches represent the bifurc
solutions of the equilibrium position of the shell. In particula
branch 2 bifurcates from branch 1~undeformed configuration! for
a flow velocity of 81.8 m/s~threshold of instability predicted by
linear theory!; it is strongly subcritical and is associated to a mo
shape with two longitudinal half-waves. Branch 3, which is a
strongly subcritical, bifurcates from branch 1 for a flow veloc
of 115 m/s and is associated with a mode shape with a si
longitudinal half-wave. Other branches involve a combination
the two longitudinal modes, giving a coupled mode divergen
Figure 2~a! shows that branch 3 is stable for flow velocities larg
than 25.5 m/s; analogously, branch 2 is stable for flow veloci
larger than 35.7 m/s. These results indicate that, for flow veloci
larger than 25.5 m/s, at least two~four starting at 35.7 m/s! equi-
librium positions coexist with the original undeformed configur
tion of the shell. Similar results are shown in Fig. 3, obtained
considering modes orthogonal inu. Branch 2, related to a mod
with two longitudinal half-waves, is stable for flow velocities b
tween 35.8 and 45.3 m/s, while the coupled-mode diverge
branch 4, is stable for flow velocity larger than 22.9 m/s. Branc
loses stability through the bifurcation that gives rise to coupl
mode divergence~branch 5!. Branch 3, relative to a mode with
one longitudinal half-wave, is never stable. These nonlinear
sults show that, if the shell is given enough perturbation, the
lution can jump from the undeformed original configuration to
bifurcated solution for flow velocity larger than 22.9 m/s. The lo
of stability occurs as a violent divergence, with very large sh
deformations.

In order to investigate the perturbation necessary to jump
bifurcated branches from the trivial equilibrium and the shape
the buckled shell, the basin of attraction of the trivial configu

Fig. 3 Amplitude of nonoscillatory solutions versus the flow
velocity „rubber shell …; modes orthogonal in u. , stable
branches; , unstable branches. „a… Amplitude of the first
longitudinal mode A 1,n Õh ; „b… amplitude of the second longitu-
dinal mode A 2,n Õh .
Journal of Applied Mechanics
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tion and bifurcated solutions is given in Fig. 4. This study h
been performed by direct integration of the equations of moti
using an adaptive step-size fourth-fifth order Runge-Ku
method. Figures 4~a! and 4~b! show the behavior of the shell as
function of flow velocity and with static perturbation of the fir
and second longitudinal mode shape, respectively. The minim
amplitude necessary for divergence is indicated by a thick s
line in the figure. In particular, forU549 m/s almost the same
static displacement with the shape of the first or second long
dinal mode is necessary to have divergence; however, a diffe
shape gives a jump to a different branch. For the shell model w
all seven degree-of-freedom active and a static perturbation o

Fig. 4 Basin of attraction of undisturbed and bifurcated solu-
tions; minimum amplitude necessary for divergence is indi-
cated with a thick solid line. „a… Shell with antiphase modes,
static displacement with first axial-mode shape; „b… shell with
antiphase modes, static displacement with second axial-mode
shape; „c… shell with seven degrees-of-freedom at first-axial-
mode, resonant modal excitation.
NOVEMBER 2001, Vol. 68 Õ 831



832 Õ Vol. 68, NO
Fig. 5 Post-divergence shape of the rubber shell for mode „nÄ3, mÄ1…. „a… Computed
shape for flow velocity 30 m Õs; „b… experimental shape, from Ref. †7‡.
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first longitudinal mode, the result is very close to that in Fig. 4~a!,
with the difference that a jump to branch 4 is always obtain
The basin of attraction has been investigated in Fig. 4~c! by giving
a dynamic perturbation. A modal excitation f
5 f 1,n cos(nu)sin(px/L)cos(vt) is given to the first longitudinal
mode, at the linear resonant radian frequency~therefore the fre-
quency is changed with flow velocity!. The minimum force am-
plitude f̃ 5 f 1,n /$hv1,n

2 m1@2/(pL)#% necessary for divergence i
indicated. This force decreases with flow velocity much more th
a static perturbation, as can be seen by comparing Figures 4~a–c!;
in particular, around 50 m/s only a small excitation is necessar
precipitate divergence. This result is in good agreement with
experiments of El Chebair et al.@7#. Moreover, as a consequenc
of the softening type nonlinear behavior of the shell, a redu
frequency of excitation will result in jumps much easier; this no
linear behavior is enhanced with flow velocity~@20#!.

Table 1 Comparison of linear, nonlinear and experimental „†7‡…
results for instability of the rubber shell

Type of Instability ‘‘Helicoidal’’ Solution

Linear divergence, mode~n53, m52! 81.8 m/s
Nonlinear divergence, mode~n53, m51! between 25.5

and 81.8 m/s
Experimental divergence, mode~n53, m51! 49 m/s
VEMBER 2001
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The computed shape of the shell after divergence is show
Fig. 5~a! for U530 m/s; it corresponds to the stable point
branch 3 in Fig. 2 forU530 m/s, i.e., to mode~n53, m51!. At
this velocity, the internal faces of the shell start to touch ea
other as a consequence of the large axisymmetric contrac
Therefore, this shape is not significantly changed by increas
the flow velocity. The experimental shape obtained by El Cheb
et al. @7# is shown in Fig. 5~b! and is in excellent agreement wit
Fig. 5~a!. Figures 5~a,b! also justify the necessity of a nonlinea
shell model to describe the dynamics with such large deform
tions.

The predictions of divergence computed by using linear a
nonlinear theories are compared to the experimental value
Table 1. It must be observed that the stability limit, according
the nonlinear theory, can only be given as a range of values if
level of perturbation is not exactly known. Summarizing, resu
show that the onset of instability predicted by nonlinear the
given enough disturbance is 22.9 m/s for coupled-mode div
gence~or 25.5 m/s for divergence in the first mode! instead of the
linear threshold of 81.8 m/s: a difference of more than three tim

6 Numerical Results for Shell in Unbounded Water
Flow

The system analyzed is a circular cylindrical shell simply su
ported at the ends (Nx50), immersed in unbounded flowing wa
ter (c5`) and with L/R52, h/R50.01, E52063109 Pa,
Transactions of the ASME
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r57850 kg/m3, rF51000 kg/m3, andn50.3. It is studied forn
55, which is the first mode to become unstable according
linear theory. A modal dampingz5chpL/250.01 is assumed and
the separation-of-variables flow model is used; the mean pres
is P̄50. A nondimensional fluid velocity V5U/$(p2/L)
3@D/(rh)#1/2% is introduced for convenience~@21#!.

Figures 6 and 7 present the bifurcated solutions of the equ
rium position of the system. In particular, branch 2 bifurcates fr
branch 1 forV53.36 and is associated with a mode shape wit

Fig. 6 Amplitude of nonoscillatory solutions versus the non-
dimensional external axial flow velocity; in-antiphase modes.
——, stable branches; , unstable branches. „a… Ampli-
tude of the first longitudinal mode A 1,n Õh ; „b… amplitude of the
second longitudinal mode A 2,n Õh .

Fig. 7 Amplitude of nonoscillatory solutions versus the non-
dimensional external axial flow velocity; modes orthogonal in
u. , stable branches; , unstable branches. „a… Ampli-
tude of the first longitudinal mode A 1,n Õh ; „b… amplitude of the
second longitudinal mode B 2,n Õh .
Journal of Applied Mechanics
to

sure

lib-
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single longitudinal half-wave; branch 3 bifurcates from branch
for V54.44 and is associated to a mode shape with two long
dinal half-waves. Branch 4 involves a combination of the tw
longitudinal modes, giving coupled-mode divergence. Figure 6~a!
shows that branch 2 is stable for flow velocities larger than 1.
analogously, see Fig. 6~b!, branch 3 is stable for flow velocities
larger than 2.09. These results indicate that for flow velocit
larger than 1.64, at least two~four starting at 2.09! solutions co-
exist with the original undeformed configuration of the she
More complex results are shown in Fig. 7 in which modes
thogonal inu are considered. Branch 4 corresponds to a sta
coupled-mode divergence, emerging atV52.63 and is stable for
V.2.37. Actually in Fig. 7 this coupled-mode solution is ind
cated to be stable only for a small part, but all points of the cu
are stable for a fixed velocity; i.e., when the velocity is chang
the solution is stable only if all seven degrees of freedom
evaluated, and this solution evolves on an axisymmetric surf
rotating around the velocity axis in a kind of helicoidal motio
The reason for this peculiar behavior is due to the relations
B1,n /A1,n52A2,n /B2,n between the generalized coordinates
lated to asymmetric modes. These results show that the ons
instability predicted by nonlinear theory, given enough dist
bance, isV51.64, instead of the linear threshold of 3.36. T
difference is of the order of 1:2.

In order to simulate the dynamical behavior of the compl
system, the equations of motion have been integrated numeric
starting from one of the fixed points obtained atV56 and then
slowly decreasing the flow velocity. An adaptive step-size four
fifth order Runge-Kutta integration algorithm was used. The res
in Fig. 8 shows that all seven generalized coordinates are diffe
from zero for a large range of flow velocities. It is interesting
observe that, forV.2.37, the solution belongs to an axisymmetr
surface that rotates around its axis in helicoidal fashion. This a
symmetric surface is obtained by rotation of branch ‘‘4’’ in Fig.
around theV-axis. For 1.64,V,2.37, the system follows the

Fig. 8 Behavior of the system starting from a point where the
system is subjected to coupled-mode divergence at VÄ6, and
then slowly decreasing the nondimensional flow velocity V.
Generalized coordinates: „a… A 1,n and B 1,n versus V; „b… A 2,n
and B 2,n versus V.
NOVEMBER 2001, Vol. 68 Õ 833
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first-mode divergence without rotating any more. AtV51.64 the
system regains the stable undeformed configuration. The re
obtained can be compared with those of Amabili et al.@13# for the
same shell with internal water flow. The qualitative behavior
the system is the same, but the shell is slightly more stable.

7 Conclusions
The results obtained for both annular and unbounded exte

axial flow show that the onset of instability, given enough pert
bation, is much lower~two, three times, or even more! than the
instability limit predicted by linear theories. This is due to th
large shell deformation associated with divergence of the s
that, as indicated by calculations and experiments, are at lea
the same order of magnitude as the shell thickness. The pre
study explains the discrepancy between linear theories and ex
mental results and shows the necessity of using a nonlinear th
since non-negligible perturbations, e.g., due to flow excitation,
always present in applications. In order to obtain more accu
results, more than two longitudinal modes should be used in
mode expansion; however, the qualitative results are unchan
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The partitioned-modeling and similarity methods are applied in this paper to deriv
closed-form solution for localized dynamic failure problems, with a nonlinear local d
age model. The initial point of the localization is taken as the point at which the typ
governing differential equation transforms from being hyperbolic to elliptic for dyna
case due to material damage. The evolution of localization is represented by a m
material surface of discontinuity between the elliptic domain and hyperbolic domai
closed-form solution for a static loading case is also given as a complementary no
show evolution of the localized failure. The effects of model parameters on the struc
response are investigated, and the evolution of relevant field variables is illustrate
demonstrate the essential feature of the localized failure evolution.
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1 Introduction
There exist two different approaches to model the evolution

material failure, i.e., continuous and discontinuous ones, after
onset of failure is identified. Decohesion models and fracture
chanics models are representative of discontinuous approach
which strong discontinuities are introduced into a continuum bo
such that the mathematical model is well posed for a set of gi
boundary and/or initial data. On the other hand, nonlocal~integral
or strain gradient! models, the Cosserat continuum models a
rate-dependent models are among the continuous approache
posed to regularize the localization problems, in which the high
order terms in space and/or time are introduced into the str
stress relations so that the mathematical model is well posed
higher-order sense for given boundary and/or initial data.

The use of higher-order terms in space makes it difficult
perform large-scale computer simulation, due to the limitation
current computational capability. As can be found by review
the existing nonlocal models, the nonlocal terms are usually
cluded in the limit surface so that a single higher-order govern
differential equation will appear in the problem domain. If we c
find an alternative approach to replace the single higher-o
equations in the single domain with lower-order equations in s
domains, parallel computing might be used for the large-sc
simulation of localization problems. To demonstrate the propo
approach, a one-dimensional wave propagation problem is con
ered here.

It is known that waves can propagate in a continuum only if
material tangent stiffness tensor is positive definite. The w
equation appears to lose its hyperbolicity with the advent of m
terial softening if a local model is used~@1,2#!. As shown by
Bazant and Belytschko@3#, the softening region in a local con
tinuum tends to localize into a single surface at which the str
becomes infinite instantaneously. As a result, if a local mode
used, the strain-softening process dissipates no energy over
nite interval of time in the problem domain, which is not repr

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov.
1999; final revision, Nov. 10, 2000. Editor: J. W. Ju. Discussion on the paper sh
be addressed to the Editor, Professor Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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sentative of the physics involved. With the use of a partitione
modeling approach, however, the evolution of localization can
predicted with the use of local models.

The basic idea of the partitioned-modeling approach is to ap
different local constitutive models inside and outside the locali
tion domain whose boundary is a moving material surface of d
continuity that is associated with the local changes of mate
properties. The initial point of localization is taken as the point
which the type of governing differential equation transforms fro
being hyperbolic to elliptic. The partitioned-modeling approa
has been applied to both quasi-static and dynamic localiza
problems~e.g.,@4–8#!. To provide a rigorous mathematical trea
ment, a similarity method has been used with a linear local e
toplastic model to solve the localization problem that involv
moving boundary conditions~@7#!, without invoking any jump or
discontinuity conditions in advance, as required in the previo
work ~@5,9#!. To find a closed-form solution, the key assumpti
made in the analytical approach was that the speed of the mo
surface is constant. To explore the applicability of the similar
method to other problems, a closed-form solution is obtained
this paper for a nonlinear local damage model.

A recent study of the failure wave propagation in shock
glasses implies that the microfissuring at one location might
duce local deformation heterogeneities that in turn initiate m
crofissuring in the adjacent material and so on~@10#!. Hence, a
diffusion equation governing the progressive percolation of h
erogeneous microdamage appears to capture the essence
dynamic failure evolution in shocked glasses, as verified with
experimental data available. In fact, the use of jump conditio
could also result in a diffusion equation governing the failu
wave speed, through a mathematical argument~@6#!. However, a
closed-form solution cannot be obtained for the nonlinear dif
sion equation governing the evolution of microdamage that
pends on the stress state and internal state variables in gener
order to obtain a closed-form solution in this paper, the diffus
speed of the moving material surface is simplified to be const
This can be thought as a special case of diffusion: i.e., the ti
average of a real diffusion process. Due to the limitation of c
rent experimental facilities, it is still a challenging task to quan
tatively determine how the internal energy dissipates and diffu
in real time associated with the evolution of dynamic failure. A
though the propagation of a failure interface has been dem
strated in the open literature, the speed appears to decrease
propagation distance in some impact experiments~e.g.,@11#! and
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to be constant in other impact experiments~e.g.,@12#!, due to the
difference in experimental techniques. The lack of consistenc
existing experimental data, therefore, does not warrant to qua
tatively evaluate the speed of the failure interface. The propo
mathematical approach for modeling dynamic failure evolut
with local constitutive models provides not only a qualitati
means to explore the energy dissipation and diffusion process
also a useful tool to verify the numerical solutions.

2 Partitioned-Modeling Approach With a Nonlinear
Local Damage Model

The proposed analytical approach is illustrated here by solv
a one-dimensional problem of dynamic failure evolution, with t
use of a rate-independent nonlinear local damage constitu
model~Fig. 1!. In this problem, a tensile bar of lengthL with mass
densityr is fixed at the left endx50. Letting E denote Young’s
modulus,s the normal stress,« the normal strain,s0 the elastic
limit stress with«05s0 /E, andb the model parameter, the dam
age model is described as follows.

A strain-based damage surface is defined as

f d5«2«0~11bD! (1)

whereD is the damage parameter which can be calculated thro
the damage consistency condition:

D5
«2«0

b«0
, if «>«0 . (2)

D is zero for the undamaged material, and it can grow untilD
51 with «5«F5(b11)«0 . The elastodamage secant stiffne
takes the form of

Eed5E~12D !5
~b11!«02«

b«0
E, if «>«0 . (3)

The stress is then given by

s5H E«, if «,«0 ~elastic regime!, ~4a!

~b11!«0«2«2

b«0
E, if «>«0 ~damaging regime!. ~4b!

By taking ds/d«50, we get«L5(b11)«0/2 that corresponds
to the ultimate limit stresssL5(b11)2s0 /(4b), as can be
shown by substituting«L into Eq. ~4b!. Note that«F52«L in this
nonlinear damage model.

The corresponding tangent modulus takes the forms of

ds

d«
5H E, if «,«0 ~elastic regime!, ~5a!

2
2E

b«0
~«2«L!, if «>«0 ~damaging regime!. ~5b!

Fig. 1 A nonlinear local elastodamage model
836 Õ Vol. 68, NOVEMBER 2001
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In order to initiate localized damage in the bar at the fixed e
x50, a constant stresssa within the range (0.5sL ,sL) is applied
at the free endx5L. Thus, an elastic stress wave will propaga
along the bar fromx5L to x50. Generally, the equation of mo
tion for one-dimensional wave propagation can be written as

]2u

]t2 2
1

r

ds

d«

]2u

]x2 50 (6)

wheret denotes time, andu displacement.
Before the wave front reaches the rigid boundary atx50, the

stress is below the limit stress. The material behavior is elastic
the tangent modulus is positive. Therefore, the differential eq
tion governing the elastic wave domain is hyperbolic:utt2ve

2uxx

50, with ve5(E/r)1/2 being the uniaxial elastic wave spee
When the wavefront reaches the rigid boundary att5tL5L/ve ,
stress will be doubled and exceed the limit stress. As a result,
material will undergo damage with a negative tangent modu
Thus, a new domain, i.e., a dynamic localization domain, is p
duced, in which the type of governing differential equation tran
forms from being hyperbolic to elliptic. If nothing is added t
regularize the solution, a zero measure of the elliptic dom
would occur for the local model. However, the boundary betwe
the elliptic and hyperbolic domain is assumed here to be gover
by a diffusion equation which is the transition type between h
perbolic and elliptic PDE’s~@13#!. As can be seen, the initiation o
localization is accompanied by the initiation of a material boun
ary across which the type of governing differential equati
changes due to the material damage. This material boundary
move along the bar during the evolution process of localizati
The physics behind the evolution of localization is related here
the progressive percolation of heterogeneous flow or microd
age, starting from a critical state.

Two facts based on experimental observations should be e
dated here. First, the size of the localization zone is finite. Seco
this finite localization zone is not formed instantaneously. Inste
it is formed over a finite time span. In other words, the evoluti
of localization, which is represented by a moving material bou
ary between the elliptic and the hyperbolic domain, has a fin
speed. To obtain a closed-form solution, this speed is assu
here to be a constantvb , as discussed in the last section. Based
the experimental data available, however, it appears thatvb should
depend on the stress state and internal state variables in gen

In summary, the whole solution domain is partitioned by
moving boundary]V I5xb(t) after the limit state is reached. A
any given timet.tL , the whole domain consists of two subdo
mains: an elliptic domainV I and a hyperbolic domain (V II
1V III ), as shown in Fig. 2. Therefore, we can apply differe

Fig. 2 After the limit state is reached, the whole solution do-
main is partitioned by a moving boundary „­V I… into two do-
mains: an elliptic domain „V I… and hyperbolic domain „V II
¿V III…
Transactions of the ASME
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local constitutive models to the elliptic and the hyperbolic d
mains, respectively, and obtain an analytical solution for
whole domain.

3 Analytical Solutions in Partitioned Domains for a
Dynamic Case

3.1 Solution in Elliptic Domain „V I …. After substituting
Eq. ~5b! into Eq. ~6!, the differential equation governing the lo
calization zone is given by

]2u2

]t2 1
2E

b«0r S ]u2

]x
2«LD ]2u2

]x2 50, xP@0,xb~ t !# and

tP@ tL ,tF# (7)

where the superscripts2 and 1 denote the field variables to th
left and right of the moving material boundary, respectively. T
location of the moving material boundaryxb(t) is defined as

xb~ t !5vb~ t2tL!, tP@ tL ,tF#. (8)

Since«L is a constant, Eq.~7! can be equivalently rewritten a

]2u2

]t2 1
E

b«0r

]

]x S ]u2

]x
2«LD 2

50. (9)

Then, taking derivative with respect tox for each item in Eq.~9!,
we have

]2

]t2 S ]u2

]x
2«LD1

E

b«0r

]2

]x2 S ]u2

]x
2«LD 2

50. (10)

Equation~10! is the differential equation governing the evolutio
of the strain field after the limit state is reached. Leta
52E/(rb«0)52ve

2/(b«0), and define a new function

w2~x,t !ª
]u2

]x
2«L5«22«L . (11)

Then, Eq.~10! becomes

]2

]t2 w21
a

2

]2

]x2 ~w2!250. (12)

It can be rewritten as follows:

w tt
21a~~wx

2!21w2wxx
2 !50. (13)

The following set of data is prescribed for Eq.~13!:

w2~x5xb~ t !,t !50, tP@ tL ,tF#, (14a)

w2~x50,t5tF!5«F2«L5«L , (14b)

which represents the condition at the moving boundaryxb(t) ~the
initiation of localization!, and the boundary condition at the fixe
end whent5tF , the time at which the final rupture occurs. In th
paper, tF is considered to be an independent parameter, wh
should be related to the strain rate in the post-limit regime. In f
(«F2«0)/(tF2tL) yields the average strain rate atx50 during
the evolution of damage.

The general solution of Eq.~13! can be obtain by variable trans
formations~Appendix!, and is given as follows:

w2~x,t !56@2~k~x2c~ t2tL!!1 l !#1/22c2/a. (15)

Substituting Eqs.~8! and~14a! in Equation~A2! ~Appendix! we
have

05w2~vb~ t2tL!,t !5 f ~vb~ t2tL!2c~ t2tL!!. (16a)

The only choice for the above condition to hold leads toc5vb ,
becauset is a variable. In other words, the response in the ellip
domain is instantaneous. Atx50, t5tL , we have

05w2~0,tL!56~2l !1/22vb
2/a, (16b)
Journal of Applied Mechanics
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that is l 5vb
4/(2a2). Therefore, the solution of Eq.~10! becomes

w2~x,t !56@2k~x2vb~ t2tL!!1~vb
2/a!2#1/22vb

2/a. (17)

Using the condition of final state,w2(x50,t5tF)5«L , we obtain

k52
~b11!«0

2

4vb~ tF2tL! Fb11

2
1bS vb

ve
D 2G . (18)

Finally, the evolution of the strain field in the localization do
main is described by

«2~x,t !5
b11

2
«02

b«0

2 S vb

ve
D 2

1
«0

2
F,

xP@0,xb~ t !# and tP@ tL ,tF# (19a)

with

F5Fb2S vb

ve
D 4

2
~b11!

vb~ tF2tL! S b1112bS vb

ve
D 2D ~x2vb~ t

2tL!!G1/2

.

The corresponding strain rate thus takes the form of

«̇2~x,t !5
~b11!«0

4F~ tF2tL! Fb1112bS vb

ve
D 2G ,

xP@0,xb~ t !# and tP@ tL ,tF#. (19b)

3.2 Solution in Damaged Hyperbolic Domain„V II …. The
governing differential equation for the hyperbolic domainV II is
similar to Eq.~7! except that the tangent modulus is positive d
to «2«L,0 in Eq. ~5b!, namely,

]2u1

]t2 1
2E

b«0r S ]u1

]x
2«LD ]2u1

]x2 50

xP@xb~ t !,xe~ t !# and tP@ tL ,tF# (20)

whereb.1. For b<1, «L5«0 , so that no damaged hyperboli
~damage hardening! domain exists.

Following the same derivations as in the previous section,
~20! can be rewritten into a form similar to Eq.~12!, i.e.,

]2

]t2 w11
a

2

]2

]x2 ~w1!250 (21)

where

w1
ª

]u1

]x
2«L5«12«L .

By the concepts of the domain of dependence and the rang
influence~@14#!, the post-limit response through the moving m
terial boundary]V1 only affects the solution at the points be
tween the moving boundaries]V15xb(t) and ]V25xe(t) that
are originated at the point (0,tL) ~Fig. 2!. Therefore, the hyper-
bolic domain can be further partitioned into two subdomai
V II 5$(x,t):xP@xb(t),xe(t)#,tP@ tL ,tF#% and V III 5$(x,t):x
P@xe(t),L#,tP@ tL ,tF#%, where the subdomainV II is under the
influence of post-limit response but the subdomainV III is not.

Because of the evolution of the localization zone and the pro
gation of the reflected wave, the boundaries at both the left
right side of the subdomainV II are moving with time. The left
boundary]V I ~onset failure surface! is assumed to be moving at
constant speedvb , and it is characterized by a bounded strain«u
that must be not larger than«L . The right boundary]V2 ~dam-
aged wave front! is moving with speedve* and is characterized by
«0 . Thus, for the subdomainV II , we have the following set of
prescribed boundary conditions:
NOVEMBER 2001, Vol. 68 Õ 837



n

a

b

ial
d

:

ess

lcu-

ary
«1~x5xb~ t !,t !5«u , tP@ tL ,tF#, (22a)

«1~x5xe~ t !,t !5«0 , tP@ tL ,tF#. (22b)

The positions of the left and right boundaries, for timet.tL are
determined by Eq.~8! and the following equation:

xe~ t !5ve* ~ t2tL!, with ve* 5ve~121/b!1/2 and tP@ tL ,tF#,
(23)

respectively, whereve* is the speed of the damaged wavefro
which follows from the fact that the tangent modulusds/d«
5E(121/b) at «5«0 .

To solve this boundary value problem with the moving boun
ary conditions, a similarity method~@15,16#! can be used. The
similarity transformations assume the form

u~h!5w1, h5
x2xb~ t !

xe~ t !2xb~ t !
5

x2vb~ t2tL!

~ve* 2vb!~ t2tL!
,

xP@xb~ t !,xe~ t !# and tP@ tL ,tF# (24)

where x2xb(t) is the distance fromx to the moving material
boundary]V1 , andxe(t)2xb(t) is the current total length of the
domainV II .

Here, it is reasonable to suppose thatu is not a function oft and
x separately, but rather it is a function of their dimensionless ra
h. Using this assumption, Eq.~21! can be recast into an equatio
for the unknownh. To do this we first represent the partial deriv
tives ofw1 with respect tot andx in terms of the derivatives ofu
with respect toh, which can be found, using the chain rule, to

]2

]t2 w15
1

~ve* 2vb!2~ t2tL!2 F x2

~ t2tL!2

du2

dh2 1
2x~ve* 2vb!

~ t2tL!

du

dhG ,
(25a)

]2

]x2 ~w1!25
2

~ve* 2vb!2~ t2tL!2 Fu
d2u

dh2 1S ]u

]h D 2G . (25b)

Substituting Eq.~25! into ~21! and recalling that

x

~ t2tL!
5~ve* 2vb!h1vb (26)

from Eq. ~24!, we can reduce the second-order PDE~21! to a
second-order ODE as follows:

@~vb1~ve* 2vb!h!21au#
d2u

dh2 1aS du

dh D 2

12~ve* 2vb!@vb1~ve*

2vb!h#
du

dh
50. (27)

Equation~27! has the simple form

d

dh H @~vb1~ve* 2vb!h!21au#
du

dhJ 50; (28)

and therefore, we have

@~vb1~ve* 2vb!h!21au#
du

dh
5C1 (29)

for some constantC1 . Since the symmetric condition atx50
when t5tL is wx(x50,t5tL)50, we havedu/dh(h50)50 so
that C150. We have the trivial solutiondu/dh50, namely,
u5constant. The nontrivial solution can be obtained from the f
lowing equation:

@vb1~ve* 2vb!h#21au50. (30)

The general solution of Eq.~30! is given by

u52
1

a
@vb1~ve* 2vb!h#2. (31)
838 Õ Vol. 68, NOVEMBER 2001
t,

d-

tio
n
-

e

ol-

Substituting Eq.~24! into ~31! gives

«1~x,t !5
b11

2
«02

b«0

2 F x

ve~ t2tL!G
2

,

xP@xb~ t !,xe~ t !# and tP@ tL ,tF#. (32)

The corresponding strain rate is given by

«̇1~x,t !5
b«0x2

ve
2~ t2tL!3 , xP@xb~ t !,xe~ t !# and tP@ tL ,tF#.

(33)

3.3 Solution in Undamaged Hyperbolic Domain„V III ….
To obtain the strain distribution directly, the governing different
equation for the subdomainV III is expressed in a strain-base
form as follows:

]2«1

]t2 2
E

r

]2«1

]x2 50 xP@xe~ t !,L# and tP@ tL ,tF#

(34)

with the boundary conditions

«1~x5xe~ t !,t !5«u<«0 , tP@ tL ,tF#, (35a)

«1~x5L,t !5«a5sa /E, tP@ tL ,tF#, (35b)

where«u is a bounded strain which must be not larger than«0 . In
this case, the similarity transformations take the following form

u~h!5
«1

«a
, h5

x2ve* ~ t2tL!

L2ve* ~ t2tL!
, xP@xe~ t !,L# and

tP@ tL ,tF# (36)

whereL2ve* (t2tL) is the current total length of the domainV III
and «a is the strain corresponding to the incident elastic str
wave.

The solution is found to be

«1~x,t !5sa /E, xP@xe~ t !,L# and tP@ tL ,tF#. (37)

The corresponding stress field in each subdomain can be ca
lated by using Eq.~4!.

3.4 Discussion and Demonstration. There is a jump in
strain rate across the moving material boundary]V15xb(t), i.e.,

«̇2~x5xb
2~ t !,t !Þ«̇1~x5xb

1~ t !,t !, tP@ tL ,tF#. (38a)

This fact is easily seen because it follows from Eq.~19b! that

«̇2~x5xb
2~ t !,t !5

~b11!«0

4b~ tF2tL! F ~b11!S ve

vb
D 2

12bG ,
tP@ tL ,tF#, (38b)

while the use of Eq.~33! results in

«̇1~x5xb
1~ t !,t !5

b«0

~ t2tL! S vb

ve
D 2

, tP@ tL ,tF#. (38c)

There is also a jump in strain rate across the moving bound
]V25xe(t), i.e.,

«̇1~x5xe
2~ t !,t !Þ«̇1~x5xe

1~ t !,t !, tP@ tL ,tF#, (39a)

because it follows from Eq.~33! that

«̇1~x5xe
2~ t !,t !5

~b21!«0

~ t2tL!
, tP@ tL ,tF#, (39b)

while the use of Eq.~37! yields

«̇1~x5xe
1~ t !,t !50, tP@ tL ,tF#. (39c)

At the moving boundaryxb(t)5vb(t2tL), the normalized
strain and stress jumps are given by
Transactions of the ASME



Fig. 3 Evolution of localization along the bar

Fig. 4 Normalized stress profiles corresponding to Fig. 3

Fig. 5 Damage evolution corresponding to Fig. 3

Fig. 6 Strain profiles for different b at tÄ1.25t L
Journal of Applied Mechanics
Fig. 7 Stress profiles for different b at tÄ1.25t L

Fig. 8 Damage profiles for different b at tÄ1.25t L

Fig. 9 Strain profiles for different v b at tÄ1.25t L

Fig. 10 Stress profiles for different v b at tÄ1.25t L
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D 2
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s0
5

s12s2

s0
5

b

4 S vb

ve
D 4

.

(40)

The analytical solutions are illustrated in Figs. 3–12, with
assumption oftF51.25tL . The strain and stress are normaliz
with respect to«0 and s0 , respectively. Figures 3, 4, and 5, re
spectively, show the evolution of dynamic failure. The effects
the model parameterb on the strain, stress, and damage fields
displayed in Figs. 6, 7, and 8. The influences of the speed of
moving material surface on the evolution of localization are a
illustrated in Figs. 9, 10, and 11. The jumps in the strain rate
be seen in Fig. 12.

4 Analytical Solutions in Partitioned Domains for a
Static Case

To demonstrate the applicability of the proposed approach
other cases, the analytical solutions for quasi-static failure ev
tion with the same nonlinear local damage model as in the
namic case are discussed in this section. Similar to the dyna
problem, a tensile bar of lengthL is fixed at the left endx50. The
one-dimensional governing differential equation for the qua
static case can be written as follows:

ds

d«

]2u

]x2 50 (41)

where u(x,t) denotes displacement, witht parameterizing the
loading process. As illustrated in Fig. 13, the static bar is defi
on a closed rectangle in thext-plane. Assuming an initial imper
fection is located atx50, the strain localization is initiated atx
50 when s5sL at time t5tL . The loss of ellipticity is then

Fig. 12 Strain history at x ÕLÄ0.05 and 0.1 after localization
occurs

Fig. 11 Damage profiles for different v b at tÄ1.25t L
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regularized by the initiation of a moving material boundary, acro
which different elliptic equations hold in the subdomainV I and
subdomainV II , respectively. Using the partitioned-modeling a
proach discussed in previous sections, we can apply different l
constitutive models to each such domain, and obtain analyt
solutions for the whole domain by enforcing the displacem
continuity across the interface between two subdomains.

4.1 Solution Inside the Localization Domain„V I …. After
substituting Eq.~5b! into Eq. ~41!, the differential equation gov-
erning the localization zone is given by

S ]u2

]x
2«LD ]2u2

]x2 50 xP@0,xb~ t !# and tP@ tL ,tF#

(42)

where the superscripts2 and 1 denote the field variables to th
left and right of the moving boundary]V5xb(t), respectively.
The location of the moving boundaryxb(t) is defined by Eq.~8!.

Since«L is a constant, Eq.~42! can be rewritten as

S ]u2

]x
2«LD ]

]x S ]u2

]x
2«LD50. (43)

By solving the equation]u2/]x2«L50, we get only a trivial
solution ]u2/]x5«L that excludes the evolution of localization
The meaningful solution can be obtained by solving the followi
equation:

]

]x S ]u2

]x
2«LD50, (44)

with the following conditions:

«2~x50,t5tL!5«L (45a)

«2~x50,t5tF!5«F . (45b)

The general solution to Eq.~44! can be expressed as

u2~x,t !5«Lx1 f ~ t !x1C. (46)

Since for any timet at the fixed end, we haveu2(x50,t)50, so
it follows that C50.

The final solution of the original problem is then found to b

u2~x,t !5«Lx1
«F2«L

tF2tL
~ t2tL!x, (47)

which satisfies both the governing differential equation and
boundary conditions. Substituting«L5(b11)«0/2 and «F5(b
11)«0 into ~47!, we have

Fig. 13 After the limit state is reached, the whole solution do-
main for a static bar is partitioned by a moving boundary „­V…

into two elliptic domains: V I and V II
Transactions of the ASME
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u2~x,t !5
~b11!«0

2 S 11
t2tL

tF2tL
D x. (48)

As characterized by an elliptic equation, the strain field is inst
taneously uniformly distributed over the whole localization zon
and increases with time only:

«2~x,t !5
~b11!«0

2 S 11
t2tL

tF2tL
D . (49)

The strain rate inside the localization zone is constant for
simple quasi-static bar problem and given by

«̇2~x,t !5
~b11!«0

2~ tF2tL!
. (50)

4.2 Solution Outside the Localization Domain „V II ….
The governing differential equation outside the localization d
main, i.e., insideV II , is similar to Eq.~42! except that the tangen
modulus is positive due to«2«L,0 in Eq. ~5b!, namely,

S ]u1

]x
2«LD ]2u1

]x2 50 xP@xb~ t !,L# and tP@ tL ,tF#.

(51)

Similarly, Eq. ~51! can be rewritten as follows:

S ]u1

]x
2«LD ]

]x S ]u1

]x
2«LD50. (52)

One possible solution to Eq.~52! can be obtained by solving th
equation

]u1

]x
2«L50, (53)

with the result being

u1~x,t !5«Lx1 f ~ t !5
~11b!«0

2
x1 f ~ t !. (54)

Since at any timet, the displacement continuity holds across t
moving boundaryxb(t)5vb(t2tL), that is,

u2~x5xb
2~ t !,t !5u1~x5xb

1~ t !,t !. (55)

Substituting solutions~48! and ~54! into Eq. ~55!, we have

~b11!«0

2 S 11
t2tL

tF2tL
D vb~ t2tL!5

~b11!«0

2
vb~ t2tL!1 f ~ t !.

(56)

So

f ~ t !5
~b11!«0vb

2

~ t2tL!2

tF2tL
. (57)

The solution inV II then takes the form of

u1~x,t !5
~11b!«0

2 S x1
vb~ t2tL!2

tF2tL
D . (58)

Therefore, the strain field is constant outside the localization zo
namely

«1~x,t !5
]u1

]x
5

~11b!

2
«0 , (59)

which satisfies the initial condition«1(x,t5tL)5«L .
Another possible solution may be obtained by solving the eq

tion

]

]x S ]u1

]x
2«LD50. (60)

The general solution of Eq.~60! can be expressed as
Journal of Applied Mechanics
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u1~x,t !5«Lx1 f ~ t !x1C5S ~11b!«0

2
1 f ~ t ! D x1C. (61)

With the use of the initial condition at the fixed end att5tL ,
we haveu1(x50,t5tL)50, so it follows thatC50. Using the
continuity condition~55! again, we have

~b11!«0

2 S 11
t2tL

tF2tL
D vb~ t2tL!5S ~b11!«0

2
1 f ~ t ! D vb~ t2tL!,

(62)

which yields

f ~ t !5
~b11!«0

2

t2tL

tF2tL
. (63)

Fig. 14 Evolution of localization along the bar

Fig. 15 Normalized stress profiles corresponding to Fig. 14

Fig. 16 Damage evolution corresponding to Fig. 14
NOVEMBER 2001, Vol. 68 Õ 841
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u1~x,t !5
~b11!«0

2 S 11
t2tL

tF2tL
D x. (64)

The corresponding strain field is then given by

«1~x,t !5
~b11!«0

2 S 11
t2tL

tF2tL
D>«L , tP@ tL ,tF#, (65)

which is in conflict with the condition that outside the localizatio
zone the strain field should not exceed the limit strain«L . In fact,
Eq. ~65! is the same as Eq.~49!, which implies that the whole ba
enters the post-limit regime without localization. Therefore t
final solutions outside the localization zone should be given
Eqs.~58! and ~59!.

Fig. 17 Strain profiles for different v b at tÄ1.25t L

Fig. 18 Stress profiles for different v b at tÄ1.25t L

Fig. 19 Damage profiles for different v b at tÄ1.25t L
842 Õ Vol. 68, NOVEMBER 2001
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4.3 Discussion and Demonstration. At the moving bound-
ary xb(t)5vb(t2tL), the normalized strain and stress jump a
given by

D«

«0
5

«12«2

«0
52

b11

2

t2tL

tF2tL
and

Ds

s0
5

s12s2

s0

5
~b11!2

4b S t2tL

tF2tL
D 2

. (66)

Note that the jumps in the static case depend on the load
process instead of being constant as in the dynamic case, sho
Eq. ~40!. The analytical solutions are illustrated in Figs. 14–1
with the assumptions oftF51.25tL andvb50.5ve . The change of
the model parameterb would result in the change of the limi
state. The effects of the speed of the moving boundaryvb on the
evolution of localization are illustrated in Figs. 17, 18, and 19.
can be seen, the essential features of quasi-static evolutio
localization can be quantitatively predicted by the proposed
proach. Note that the apparent quasi-static equilibrium does
hold through the whole bar because of the strain jump from
damage model.

5 Concluding Remarks
Instead of invoking nonlocal models, a rigorous partitione

modeling approach is employed to obtain, via a similarity meth
a closed-form solution for a dynamic damaged bar with the us
a nonlinear local damage model. The similarity method is a s
able tool to solve the problem involving moving boundary con
tions. It may reduce the second-order PDE to a second-order O
and map the moving boundary conditions to fixed boundary c
ditions. It is shown that the predictions of the model continuou
depend on the model parameters. The analytical solutions for
localized failure problem, under the given set of boundary a
initial data, and the material properties, are unique and stable
cording to the theory of differential equations. The proposed
proach can also be used to obtain a closed-form solution fo
quasi-static damage bar.

To obtain a closed-form solution, the major assumption mad
this paper is that the material surface of discontinuity is moving
a constant speed. Based on the experimental data available,
ever, the evolution of localization appears to be an energy di
pation and diffusion process, which should be dependent on
stress state and internal state variables. The similarity met
used here may be used for a specific three-dimensional case,
as the localization evolution starting from the center of an isot
pic sphere under dynamic loading. For a general case, howev
numerical procedure must be invoked. With the assumption
the evolution of microcracking in space is of diffusion nature
computational procedure is being developed to simulate the n
linear damage diffusion process associated with the evolution
dynamic material failure. As a result, the movement of the failu
interface will be determined by a nonlinear diffusion equation
given stress state and internal variables. The closed-form solu
obtained here could be used to verify the computational proced
in simple cases. If the evolution of localization can be predic
via local models in subdomains in general, parallel comput
might be used incrementally for the large-scale simulation
structural failure problems without invoking high-order models
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Appendix
From a series of derivations, we obtain the following nonline

PDE for strain evolution:

w tt1a~wx
21wwxx!50. (A1)

Suppose Eq.~A1! has an existing solution in the form of a trave
ing wave, that is,

w~x,t !5 f ~x2c~ t2tL!! for t>tL , (A2)

where f 5 f (j) and c is the wave speed. Substituting~A2! into
~A1!, we have

c2f 9~j!1a@ f 8~j!21 f ~j! f 9~j!#50. (A3)

This ODE can be solved after using some variable transfor
tions. Equation~A3! can be rewritten as

S c2

a
1 f ~j! D f 9~j!1 f 8~j!250. (A4)

Using the new variable

zª
c2

a
1 f ~j! (A5)

the ODE~A4! is recast in the form

zz91~z8!250. (A6)

To solve it, we setw5z8 to obtain the first order system

z85w, (A7)

w85
w2

z
. (A8)

Remove the independent variablej by

dw

dz
52

w

z
(A9)

and separate the variables to obtain the solution

lnuwu52 lnuzu1k, (A10)

or equivalently

uwu5
k

uzu
. (A11)

Therefore, we have

z85w5
k

z
, (A12)

so

zz85
d

dj S 1

2
z2D5k (A13)
Journal of Applied Mechanics
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and

1

2
z25kj1 l . (A14)

This gives

z56@2~kj1 l !#1/2. (A15)

Using Eq. ~A5!, we obtain the general solution for Eq.~A3!,
namely,

f ~j!56@2~kj1 l !#1/22c2/a. (A16)

By converting back to the original variables through~A2!, the
final solution is given by

w~x,t !56@2~k~x2c~ t2tL!!1 l !#1/22c2/a. (A17)
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The Instability and Vibration of
Rotating Beams With Arbitrary
Pretwist and an Elastically
Restrained Root
The governing differential equations and the boundary conditions for the cou
bending-bending-extensional vibration of a rotating nonuniform beam with arbitr
pretwist and an elastically restrained root are derived by Hamilton’s principle. The se
analytical solution procedure for an inextensional beam without taking account of
coriolis forces is derived. The coupled governing differential equations are transform
be a vector characteristic governing equation. The frequency equation of the syst
derived and expressed in terms of the transition matrix of the vector governing equa
A simple and efficient algorithm for determining the transition matrix of the gen
system with arbitrary pretwist is derived. The divergence in the Frobenius method
not exist in the proposed method. The frequency relations between different syste
revealed. The mechanism of instability is discovered. The influence of the rotatory in
the coupling effect of the rotating speed and the mass moment of inertia, the setting
the rotating speed and the spring constants on the natural frequencies, and the ph
enon of divergence instability are investigated.@DOI: 10.1115/1.1408615#
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1 Introduction
Rotating beams, which have importance in many practical

plications such as turbine blades, helicopter rotor blades, airp
propellers, and robot manipulators have been investigated f
long time. An interesting review of the subject can be found in
papers by Leissa@1#, Ramamurti and Balasubramanian@2#, Rosen
@3# and Lin @4#. Much attention has been focused on the inve
gation of the unpretwisted beam. Most of research of the vibra
problem of rotating pretwisted beam have been studied by u
numerical method because of its complexity. No analytical so
tion for the vibration of a rotating pretwisted beam has be
presented.

Considering the Bernoulli-Euler unpretwisted beam theory,
influence of tip mass, rotating speed, hub radius, setting an
taper ratio, and elastic root restraints on the natural frequencie
transverse vibrations of a rotating beam were investigated
many investigators. Lee and Kuo@5# obtained the exact solution
for the free vibrations of rotating unpretwisted beam with bend
rigidity and mass density varying in arbitrary polynomial form
by taking the Frobenius method. Lee and Lin@6# studied the free
vibration of unpretwisted Timoshenko beams. The two coup
characteristic differential equations governing the bending
sponse uncouple into one complete fourth-order ordinary differ
tial equation with variable coefficients in the angle of rotatio
The four fundamental solutions of the uncoupled fourth-order
dinary differential equation were obtained using the Froben
method. The frequency equation was expressed in terms o
four fundamental solutions. Similarly, one can decouple the
coupled governing characteristic differential equations of a ro
ing pretwisted beam into one complete eighth-order ordinary

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 12, 1999; final revision, August 23, 2000. Associate Editor: R. C. Benson.
cussion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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ferential equation by taking many procedures of differentati
The variation of the coefficients of the uncoupled governing ch
acteristic equation will be very large. Taking the Frobeni
method, the corresponding eight fundamental solutions of
eighth-order ordinary differential equation can be expressed
power series. However, the fundamental solutions will be div
gent because the region of convergence of a power series is
ally limited.

Considering the Timoshenko unpretwisted beam theory, the
fluence of shear deformation and rotatory inertia on the bend
vibrations of a rotating beam were investigated by numerous
thors. Lee and Lin@6# studied numerically the coupling effect o
the rotating speed and the mass moment of inertia on the na
frequencies and the phenomenon of divergence instability. Lin@4#
obtained the generalized Green function of annth-order ordinary
differential equation. This Green function was used to obtain
closed-form solution for the forced vibration of a rotatin
Timoshenko beam. The prediction to the frequencies and
mechanism of divergence instability of a rotating beam have
been investigated.

For a nonrotating pretwisted beam, approximation methods
very useful tools to investigate the free vibrations of pretwis
beams where it is difficult to obtain exact solutions even for
simplest cases. These methods are the finite element method~@7#!,
the Rayleigh-Ritz method~@8#!, the Reissner method~@9#! the
Galerkin method~@10#!, and the transfer matrix method~@11,12#!.
Lin @12# derived the exact field transfer matrix of a nonunifor
nonrotating pretwisted beam with arbitrary pretwist and stud
the performance of a beam with elastic boundary conditio
However, the exact field transfer matrix of a rotating pretwist
beam can not be derived in a similar way.

For a rotating pretwisted beam, Rao and Carnegie@13# used the
Holzer-Myklestad approach to determine the natural frequen
and mode shapes of a cantilever pretwisted blade. Subrahman
and Kaza @14# studied the vibrations of a cantilever tapere
pretwisted beam by using the Ritz method and the finite differe
method. Subrahmanyam, Kulkarni, and Rao@15# used the Reiss-
ner method to study the vibration of a rotating pretwisted cant

-
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04-
elf
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ver Timoshenko beam. Sisto and Chang@16# proposed a finite
element method for a vibration analysis of rotating pretwis
beam. Young and Lin@17# studied the stability of a cantileve
tapered pretwisted beam with varying speed by using the Gale
method. Kar and Neogy@18# used the Ritz method to study th
stability of a rotating pretwisted cantilever beam. Hernried@19#
used the finite difference method to determine the natural frequ
cies of a rotating pretwisted nonuniform cantilever beam. Mo
over, the author used the mode-superposition method to deter
the forced vibration of the beam. Surace, Anghel, and Mares@20#
derived the approximate method based on the use of struc
influence function to determine the natural frequencies of a ro
ing cantilever pretwisted Bernoulli-Euler beam. As a result,
analytical solution has been given to the coupled bending-ben
vibrations of a rotating nonuniform beam with arbitrary pretw
and an elastically restrained root.

In this paper, the governing differential equations for t
coupled bending-bending-extensional vibration of a rotating n
uniform beam with arbitrary pretwist, an elastically restrain
root, setting angle, hub radius, and rotating at a constant ang
velocity, are derived by using Hamilton’s principle. For an ine
tensional beam, without taking account of the coriolis force’s
fect, the three coupled governing differential equations are
duced to two coupled equations and the centrifugal force
obtained. The reduced coupled governing differential equat
are transformed to a vector characteristic differential equat
The frequency equation of the system is derived and express
terms of the transition matrix of the vector governing equation
simple and efficient algorithm for determining the semi-analyti
transition matrix of the general system with nonuniform pretw
is derived. The frequency relation and the mechanism of insta
ity of unpretwisted and pretwisted rotating beams are investiga
The influence of the rotatory inertia, the coupling effect of t
rotating speed and the mass moment of inertia, the set
angle, the rotating speed and the spring constants on the na
frequencies, and the phenomenon of divergence instability
investigated.

2 Pretwisted Beam

2.1 Governing Equations and Boundary Conditions.
Consider the coupled bending-bending-extensional vibration
pretwisted and doubly symmetric nonuniform beam elastically
strained, mounted with setting angleu on a hub with radiusR,
rotating with constant angular velocityV, as shown in Fig. 1. The
displacement fields of the beam are

u5u0~x,t !2z
]w

]x
2y

]v
]x

, v5v~x,t !, w5w~x,t !, (1)

wherex, y, and z are the fixed frame coordinates.t is the time
variable. The velocity vector of a point~x, y, z! in the beam is
given by

V5F]u

]t
1V sinu~z1w!1V cosu~y1v !G i

1F]v
]t

2V cosu~x1R1u!G j1F]w

]t
2V sinu~x1R1u!Gk.

(2)

The potential energyŪ and the kinetic energyT̄ of the beam are

Ū5
1

2 E0

LE
A
sxx«xxdAdx1

1

2
KzuF]w~0,t !

]x G2

1
1

2
KzTw

2~0,t !

1
1

2
KyuF]v~0,t !

]x G2

1
1

2
KyTv2~0,t !, (3)
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T̄5
1

2 E0

LE
A
F S ]u

]t D
2

1S ]v
]t D

2

1S ]w

]t D 2GrdAdx, (4)

whereA is the cross-sectional area of the beam.KyT , Kyu , KzT ,
andKzu are the translational and rotational spring constants at
left end of the beam in they andz-directions, respectively.L is the
length of the beam.r is the mass density per unit volume.sxx ,«xx
are the normal stress and strain in thex-direction, respectively.
Application of Hamilton’s principle yields the following govern
ing differential equations:

2
]2

]x2 S EIyy

]2w

]x2 1EIyz

]2v
]x2 D1

]

]x S N
]w

]x D
1

]

]x S Jy

]3w

]t2]x
1Jx

]3v
]t2]xD2V2

]

]x S Jy

]w

]x
1Jx

]v
]x D

2rAS ]2w

]t2 2V sinu
]u0

]t D1rAV sinuS ]u0

]t
1V sinuw

1V cosuv D50, (5)

2
]2

]x2 S EIyz

]2w

]x2 1EIzz

]2v
]x2 D1

]

]x S N
]v
]xD

1
]

]x S Jx

]3w

]t2]x
1Jz

]3v
]t2]xD2V2

]

]x S Jx

]w

]x
1Jz

]v
]x D

2rAS ]2v
]t2 2V cosu

]u0

]t D1rAV cosuS ]u0

]t
1V sinuw

1V cosuv D50, (6)

]N

]x
2rA

]2u0

]t2 22rAVS sinu
]w

]t
1cosu

]v
]t D1rAV2~x1u0!50,

(7)

and the associated boundary conditions:
at x50:

u050, (8)

EIyy

]2w

]x2 1EIyz

]2v
]x2 2Kzu

]w

]x
50, (9)

Fig. 1 Geometry and coordinate system of a rotating
pretwisted beam
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]

]x S EIyy

]2w

]x2 1EIyz

]2v
]x2 D2N

]w

]x
2Jy

]3w

]x]t22Jx

]3v
]x]t2

1V2S Jy

]w

]x
1Jx

]v
]x D1KzTw50, (10)

EIyz

]2w

]x2 1EIzz

]2v
]x2 2Kyu

]v
]x

50, (11)

]

]x S EIyz

]2w

]x2 1EIzz

]2v
]x2 D2N

]v
]x

2Jx

]3w

]x]t22Jz

]3v
]x]t2

1V2S Jx

]w

]x
1Jz

]v
]x D1KyTw50, (12)

at x5L:

N~L !50, (13)

EIyy

]2w

]x2 1EIyz

]2v
]x2 50, (14)

]

]x S EIyy

]2w

]x2 1EIyz

]2v
]x2 D2N

]w

]x
2Jy

]3w

]x]t22Jx

]3v
]x]t2

1V2S Jy

]w

]x
1Jx

]v
]x D50, (15)

EIyz

]2w

]x2 1EIzz

]2v
]x2 50, (16)

]

]x S EIyz

]2w

]x2 1EIzz

]2v
]x2 D2N

]v
]x

2Jx

]3w

]x]t22Jz

]3v
]x]t2

1V2S Jx

]w

]x
1Jz

]v
]x D50, (17)

whereE is Young’s modulus.I is the area moment inertia of th
beam.Jx , Jy , andJz are mass moment of inertia per unit leng
about thex, y andz-axes, respectively.N is the centrifugal force. It
is observed that in Eq.~7! the centrifugal forceN is related tou0 ,
v, andw. The centrifugal forceN is the parameter of Eqs.~5! and
~6! in terms ofu0 , v, andw. Thus the system is nonlinear. It i
hard to obtain the solution of the system. But if an inextensio
beam without the Coriolis force effect is considered, the sys
becomes linear and the corresponding solution can be easily
tained. Moreover, the lateral vibration of a blade subjected to
rotational speed is dominant and the effect of the Coriolis fo
may be neglected@14#.

For an inextensional beam, without taking account of the C
olis force effect, the centrifugal force in Eqs.~7! and ~13! can be
expressed as

N~x!5V2E
x

L

rA~R1x!dx. (18)

In terms of the following dimensionless quantities,
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Bi j 5E~x!I i j ~x!/@E~0!I yy~0!#, i , j 5x,y,z gi5Ji~x!/Jy~0!,

m5r~x!A~x!/@r~0!A~0!#, n~j!5a2E
j

1

m~x!~r 1x!dx,

r 5R/L, V5v/L,

W5w/L, a25r~0!A~0!V2L4/@E~0!I yy~0!#,

b15KzuL/@E~0!I yy~0!#, b25KzTL/@E~0!I yy~0!#,

b35KyuL/@E~0!I yy~0!#, b45KyTL/@E~0!I yy~0!#,

h5Jy~0!/@r~0!A~0!L2#, L25r~0!A~0!v2L4/@E~0!I yy~0!#,

j5x/L, t5t/L2AE~0!I yy~0!/r~0!A~0!,

g i15
b i

11b i
, g i25

1

11b i
, (19)

the dimensionless governing characteristic differential equati
of motion for harmonic vibration with circular frequencyv are
written as

2
d2

dj2 S Byy

d2W

dj2 1Byz

d2V

dj2 D1
d

dj S n
dW

dj D
2h~a21L2!

d

dj S gy

dW

dj
1gx

dV

dj D1m~a2 sin2 u1L2!W

1ma2 sinu cosuV50, (20)

2
d2

dj2 S Byz

d2W

dj2 1Bzz

d2V

dj2 D1
d

dj S n
dV

dj D
2h~a21L2!

d

dj S gx

dW

dj
1gz

dV

dj D1m~a2 cos2 u1L2!V

1ma2 sinu cosuW50, jP~0,1! (21)

and the associated dimensionless elastic boundary condition
given as follows:
at j50:

g12S Byy

d2W

dj2 1Byz

d2V

dj2 D2g11

dW

dj
50, (22)

g22H d

dj S Byy

d2W

dj2 1Byz

d2V

dj2 D2n
dW

dj
1h~a21L2!

3S gy

dW

dj
1gx

dV

dj D J 1g21W50, (23)

g32S Byz

d2W

dj2 1Bzz

d2V

dj2 D2g31

dV

dj
50, (24)

g42H d

dj S Byz

d2W

dj2 1Bzz

d2V

dj2 D2n
dV

dj
1h~a21L2!

3S gx

dW

dj
1gz

dV

dj D J 1g41V50 (25)

at j51:

Byy

d2W

dj2 1Byz

d2V

dj2 50, (26)

d

dj S Byy

d2W

dj2 1Byz

d2V

dj2 D1h~a21L2!S gy

dW

dj
1gx

dV

dj D50,

(27)

Byz

d2W

dj2 1Bzz

d2V

dj2 50, (28)
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d

dj S Byz

d2W

dj2 1Bzz

d2V

dj2 D1h~a21L2!S gx

dW

dj
1gz

dV

dj D50.

(29)

It should be noted that considering the velocity field~2! results
in the coupling effect of the rotating speed and the mass mom
of inertia, h(a21L2)d(gydW/dj1gxdV/dj)/dj and h(a2

1L2)d(gxdW/dj1gzdV/dj)/dj. However, if the displacement
of any point in the cross section of the beam is the same as th
the center of the cross section, i.e.,u5u0(x,t), v5v(x,t), and
w5w(x,t), these effects cannot be considered~@17#!. Further-
more, when the setting angle is zero, the governing equat
become the same as those given by Rosen@3#.

It can be observed that the second terms in Eqs.~20! and ~21!
present the effect of the centrifugal forcen to increase the stiffnes
of the beam. Because the second and third terms in Eqs.~20! and
~21! are positive and negative, respectively, the coupling effec
the rotating speed and the mass moment of inertia, i.e., the
terms in Eqs.~20! and~21!, presents an axial compressive force
decrease the stiffness of the beam. Moreover, because the
pling effect includes the product of the rotating speeda and the
rotatory inertiah, the coupling effect on the frequencies is gre
for the system with large parametersa andh.

2.2 Solution Method.

2.2.1 Transformed Vector Governing Equation.Defining the
state variables as

x15W, x25
dW

dj
, x35

d2W

dj2 , x45
d3W

dj3 ,

x55V, x65
dV

dj
, x75

d2V

dj2 , x85
d3V

dj3 , (30)

Eqs.~20! and ~21! can be written as, respectively,

a1

dx4

dj
1a2

dx3

dj
1a3

dx2

dj
1a4

dx1

dj
1a5x11a6

dx8

dj
1a7

dx7

dj

1a8

dx6

dj
1a9

dx5

dj
1a10x550, (31)

a11

dx4

dj
1a12

dx3

dj
1a13

dx2

dj
1a14

dx1

dj
1a15x11a16

dx8

dj
1a17

dx7

dj

1a18

dx6

dj
1a19

dx5

dj
1a20x550, (32)

where

a15Byy , a252
dByy

dj
,

a35
d2Byy

dj2 2n1h~a21L2!gy , a452
dn

dj
1h~a21L2!

dgy

dj
,

a552m~a2 sin2 u1L2!, a65a115Byz ,

a75a1252
dByz

dj
, a85a135

d2Byz

dj2 1h~a21L2!gx ,

a95a145h~a21L2!
dgx

dj
, a105a1552ma2 sinu cosu,

a165Bzz, a1752
dBzz

dj
, a185

d2Bzz

dj2 2n1h~a21L2!gz ,

a1952
dn

dj
1h~a21L2!

dgz

dj
, a2052m~a2 cos2 u1L2!.

(33)
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Multiplying Eq. ~31! by a16 and Eq.~32! by a6 and subtracting the
latter from the former, one obtains

dx4

dj
5(

j 51

8

cjxj , (34)

where

c152~a5a162a15a6!/s, c252~a4a162a14a6!/s,

c352~a3a162a13a6!/s, c452~a2a162a12a6!/s,

c552~a10a162a20a6!/s, c652~a9a162a19a6!/s,

c752~a8a162a18a6!/s, c852~a7a162a17a6!/s, (35)

in which s5a1a162a11a6 . Similarly, multiplying Eq.~31! by a11
and Eq.~32! by a1 and subtracting the latter from the former, on
obtains

dx8

dj
5(

j 51

8

c̄ jxj , (36)

where

c̄152~a5a112a15a1!/ s̄, c̄252~a4a112a14a1!/ s̄,

c̄352~a3a112a13a1!/ s̄, c̄452~a2a112a12a1!/ s̄,

c̄552~a10a112a20a1!/ s̄, c̄652~a9a112a19a1!/ s̄,

c̄752~a8a112a18a1!/ s̄, c̄852~a7a112a17a1!/ s̄, (37)

in which s̄5a6a112a16a1 . Based on the relations~30!, ~34!, and
~36!, the transformed vector characteristic governing equation
be obtained as follows:

dX

dj
5A~j!X~j!, (38)

where

X~j!5@x1 x2 x3 x4 x5 x6 x7 x8#T,

A~j!53
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 c̄7 c̄8

4 , (39)

in which the superscript ‘‘T’’ is the symbol of transpose of a
matrix.

2.2.2 Frequency Equation.The solution of Eq.~38! can be
expressed as

X~j!5T~j,0!X~0!, (40)

where T(j,0) is the transition matrix from 0 toj, to be deter-
mined. Moreover, the state variables atj51 can be written as

xi~1!5(
j 51

8

Ti j ~1,0!xj~0!, i 51,2, . . . ,8 (41)

where Ti j is the elements of the transition matrix from 0 to
Expressing the boundary conditions~22!–~25! in terms of the
state variables$x1(0),x2(0), . . . ,x8(0)% and substituting Eq.~41!
into the boundary conditions~26!–~29!, the frequency equation o
the system is obtained,

ux i j u83850, (42)
NOVEMBER 2001, Vol. 68 Õ 847



r

y

i

in-
. It
uit-
hile
ten-
rd-
x

x-
the

rs

ctly
m

s
-

iffer

lity

un-
as
where

x115x145x155x165x1850, x1252g11,

x135g12Byy~0!, x175g12Byz~0!;

x215g21, x225g22@h~a21L2!gy~0!2n~0!#,

x235g22Byy8 ~0!, x245g22Byy~0!,

x2550, x265g22h~a21L2!gx~0!,

x275g22Byz8 ~0!, x285g22Byz~0!;

x315x325x345x355x3850, x335g32Byz~0!,

x3652g31, x375g32Bzz~0!;

x4150, x425g42h~a21L2!gx~0!,

x435g42Byz8 ~0!, x445g42Byz~0!,

x455g41, x465g42@h~a21L2!gz~0!2n~0!#,

x475g42Bzz8 ~0!, x485g42Bzz~0!;

x5 j5Byy~1!T3 j~1,0!1Byz~1!T7 j~1,0!, j 51,2, . . . ,8;

x6 j5h~a21L2!gy~1!T2 j~1,0!1Byy8 ~1!T3 j~1,0!

1Byy~1!T4 j~1,0!1h~a21L2!gx~1!T6 j~1,0!

1Byz8 ~1!T7 j~1,0!1Byz~1!T8 j~1,0!, j 51,2, . . . ,8;

x7 j5Byz~1!T3 j~1,0!1Bzz~1!T7 j~1,0!, j 51,2, . . . ,8;

x8 j5h~a21L2!gx~1!T2 j~1,0!1Byz8 ~1!T3 j~1,0!

1Byz~1!T4 j~1,0!1h~a21L2!gz~1!T6 j~1,0!

1Bzz8 ~1!T7 j~1,0!1Bzz~1!T8 j~1,0!, j 51,2, . . . ,8. (43)

Letting g115g215g315g4151 and g125g225g325g4250, the
frequency equation for a cantilever beam can be obtained.

2.2.3 Semi-analytical Transition Matrix.It is well known
~@21#! that the following Peano-Baker series is the closed-fo
transition matrix of Eq.~38!

T~j,j i 21!5I1E
j i 21

j

A~x1!dx11E
j i 21

j

A~x1!E
j i 21

x1

A~x2!dx2dx1

1E
j i 21

j

A~x1!E
j i 21

x1

A~x2!E
j i 21

x2

A~x3!dx3dx2dx1

1¯ . (44)

However, it is impossible to determine the multiple integrals
the series analytically or numerically. Hence, an approximate t
sition matrix is required. In this paper, a simple and efficient
gorithm is developed to find the approximate transition matrix

By approximating the coefficient matrixA(j) by n piecewise
constant coefficient matricesA(si), i 51,2, . . . ,n, one obtains a
characteristic governing equation with constant coefficient mat
Here si can be any value between@j i 21 ,j i # and j i denotes the
coordinate position at the end of thei th subsection. Consequentl
the transition matrix of thei th subsection fromj i 21 to j can be
obtained:

T~j,j i 21!5eA~si !~j2j i 21!, si , jP~j i 21 ,j i !. (45)

After applying the composition property of the transition matr
i.e., T(j i 11 ,j i 21)5T(j i 11 ,j i)T(j i ,j i 21), the overall transition
matrix is obtained:

T~j,0!5)
i 5 j

1

T~si !, jP~j j 21 ,j j !, siP~j i 21 ,j i !. (46)
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It can be observed that if the coefficient matrixA in the Peano-
Baker series is constant, the transition matrix~44! is the same as
Eq. ~45!. Hence, when the number of subsections approaches
finity, the approximate transition matrix becomes the exact one
can be obtained at any desired level of accuracy by taking a s
able number of subsections. It should be noted here that w
numerically determining the natural frequencies, the rate and
dency of the convergence of the solutions will be different acco
ing to the coordinate positionsi in the piecewise constant matri
selected as different values between@j i 21 ,j i #. In this paper, for a
better rate of convergence,si is taken to be (j i 211j i)/2.

3 Frequency Relations

3.1 Frequency Relations of Pretwisted Beams.The rela-
tions among the setting angleu, the rotatory inertiah, and the
frequencyL of rotating beams are studied. Meanwhile, one e
pects to predict the parameters of some system according to
parameters of another system. Two systems denoted as ‘‘a’’ and
‘‘ b’’ have the same parameters exceptu, h, andL. It is observed
from the governing Eqs.~20! and ~21! that if there exist the fol-
lowing relations, the two systems are similar:

ha~a21La,i
2 !5hb~a21Lb,i

2 !, (47)

a2 sin2 ua1La,i
2 5a2 sin2 ub1Lb,i

2 , (48)

a2 cos2 ua1La,i
2 5a2 cos2 ub1Lb,i

2 , (49)

sin 2ua5sin 2ub , (50)

wherei denotes thei th frequency. Assume that all the paramete
of the systema are given and the parameters$hb ,ub ,Lb,i% are
unknown. It is obvious that Eqs.~48! and~49! do not be satisfied
simultaneously unlessua5ub and La,i5Lb,i . SubstitutingLa,i
5Lb,i into Eq.~47!, ha5hb . It is trivial that the two systems are
the same as each other. In other words, one can’t predict exa
the parameters of the systemb from the parameters of the syste
a via the relations~47!–~50!.

However, if the relation~49! is approximated and its effect i
very small, the parameters of the systemb can be accurately pre
dicted from the parameters of the system a via the relations~47!,
~48!, and ~50!. It is observed from Eq.~21! that the integrated
parameter of the relation~49! is the coefficient for the deflection
v. When the pretwisted angle is small, the deflectionw is domi-
nant and the effect of the relation~49! is very small. Moreover, the
stiffer the system is, the larger the frequencies are. For a st
system its frequencyL is greatly larger than the rotating speeda
and the relation~49! can be approximated.

3.2.1 Frequency Relations and Mechanism of Instabi
of Unpretwisted Beams.Letting V5F50 in Eqs. ~20!–~27!,
the governing equations and the boundary conditions of an
pretwisted Rayleigh beam can be obtained, respectively,
follows:

d2

dj2 S Byy

d2W

dj2 D2
d

dj H @n2h~a21L2!gy#
dW

dj J
2m~a2 sin2 u1L2!W50, (51)

at j50:

g12Byy

d2W

dj2 2g11

dW

dj
50, (52)

g22H d

dx S Byy

d2W

dj2 D2@n2h~a21L2!gy#
dW

dj J 1g21W50,

(53)

at j51:

d2W

dj2 50, (54)
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dx S Byy

d2W

dj2 D2@n2h~a21L2!gy#
dW

dj
50. (55)

One can obtain from Eqs.~51!–~55! the relations~47! and~48!
which can be satisfied simultaneously. Given all the parameter
the systema and the setting angleub for the systemb, the corre-
sponding frequenciesLb,i and the rotatory inertiahb of the sys-
tem b can be predicted exactly by using the relations~48! and
~47!, respectively.

It should be noted that the critical state of instability isL1
2

50. If L1
2,0, the natural frequency is imaginery and the div

gent instability~@6#! occurs. SubstitutingLa,1 and the associated
parameters into the relations~47! and ~48!, one can predict
whether the divergent instability will happen to the systemb. Let-
ting Lb,1

2 50, the critical rotatory inertia and the critical settin
angle are obtained from Eqs.~47! and ~48!, respectively,

~hb!critical5ha~11La,1
2 /a2!, (56)

~ub!critical5sin21Asin2 ua1La,1
2 /a2 (57)

under the following necessary condition of the diverge
instability

sin2 ua1La,1
2 /a2,1. (58)

Because the effects of the rotatory inertiah and the
setting angleu are to decrease the frequencies of the s
tem, under the condition~58! the domain of instability is
$(u,h)u sin21A(sin2 ua1La,1

2 /a2)<u<p/2,h>ha(11La,1
2 /a2)%.

For Bernoulli-Euler beams without taking account of the effe
of the rotatory inertiah, only the relation~48! exists. The follow-
ing frequency relation can be obtained by substracting the rela
in the (i 1 j )th mode by that in thej th mode,

La,i 1 j
2 2La,i

2 5Lb,i 1 j
2 2Lb,i

2 . (59)

It should be noted that for Bernoulli-Euler beams the condition
instability ~58! is sufficient.

4 Instability of Rotating Beams

4.1 Beam With Infinite Translational Root Spring
Constant.

4.1.1 Pretwisted Beam.Consider the free vibration o
pretwisted Bernoulli-Euler beams with infinite translational ro
spring constant and without the rotational root spring, i.e.,g12
5g215g325g4151 and g115g225g315g4250. It is assumed
that there exists the free vibration of rigid-body motion and
mode shape is

W5w0j and V5v0j, (60)

wherew0 andv0 are constants. Equation~60! satisfies the bound
ary conditions~22!–~29!. Substituting Eq.~60! into the governing
Eqs.~20! and ~21!, one can obtain

2w0a2m~r 1j!1m~a2 sin2 u1L2!jw01ma2 sinu cosuv0j

50,

2v0a2m~r 1j!1ma2 sinu cosuw0j1m~L21a2 cos2 u!v0j

50, (61a)

where the first terms of Eq.~61a! are derived from the secon
terms of Eqs.~20! and~21!, respectively. Lettingr 50, the follow-
ing conditions are obtained:

~L22a2 cos2 u!w01a2 sinu cosuv050,

a2 sinu cosuw01~L22a2 sin2 u!v050. (61b)

The first two eigenvalues areL1
250 andL2

25a2. Because the
square of fundamental frequency is zero, the instability will ha
Journal of Applied Mechanics
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pen to a pretwisted Bernoulli-Euler beam. Because the effec
rotatory inertia is to decrease the frequencies, the instability
also happen to a pretwisted Rayleigh beam. However, fo
pretwisted Bernoulli-Euler beam withr .0, g11.0, andg31.0
its fundamental frequency will be greater than the value of ze
The reason is that when the hub radiusr and the rotational root
spring constantsg11 andg31 are increased from zero, the funda
mental frequency of a pretwisted Bernoulli-Euler beam is
creased from zero. This means that the instability will not happ
to a pretwisted Bernoulli-Euler beam withr .0, g215g4151,
g11.0, andg31.0.

4.1.2 Unpretwisted Beam.Letting u5v05r 50 in Eq.
~61b!, the corresponding fundamental frequency and the m
shape of an unpretwisted Bernoulli-Euler beamb2→` are ob-
tained, respectively,

L1
25a2, W5w0j. (62)

One can predict via Eq.~48! that whenub5p/2, the associated
fundamental frequencyLb,150. When the hub radiusr or the
rotational root spring constantb1 is increased, the fundamenta
frequency of the beam withub5p/2 is increased to be larger tha
zero and the instability will not happen. It is well known th
when the setting angle is decreased, the frequencies are incre
Thus the instability will not happen also for the beam withb2
→`, r .0, b1.0 andu,p/2. It is concluded that in spite of the
setting angleu and the rotating speeda the instability does not
happen to a Bernoulli-Euler beam withb2→`, b1.0, and r
.0. On the other hand, it can be observed that whenr .0 or
b1.0, the fundamental frequencyL1 of the beam withb2→`
and u50 is increased to be larger thana and the condition of
instability ~58! is not satisfied. This predicts also the abo
conclusion.

Because the frequencies of Rayleigh and Timoshenko be
taking account of the rotatory inertiah are smaller than those o
Bernoulli-Euler beams under the same conditions, the fundam
tal frequencies of the unpretwisted Rayleigh and Timoshe
beams withh.0, u5r 5b150, andb2→` will be less thana
and the necessary condition of instability~58! is satisfied. The
fundamental frequency is smaller thana and the necessary cond
tion instability ~58! is satisfied untilr andb1 are increased to be
large enough. In other words, the instability will happen to t
unpretwisted Rayleigh and Timoshenko beams withb2→`, b1
.0, r .0, andh.hcritical .

4.2 Beam With Infinite Rotational Root Spring Constants.

4.2.1 Pretwisted Beam.Consider the free vibration of a
beam with infinite rotational root spring constant and witho
translational root spring, i.e.,g115g225g315g4251 and g12
5g215g325g4150. It is assumed that there exists a rigid-bo
free-vibration motion and its mode shape is

W5w0 and V5v0 , (63)

where w0 and v0 are constants. Eq.~63! satisfies the boundary
conditions ~22!–~29!. Substituting Eq.~63! into the governing
Eqs.~20! and ~21!, the following conditions are obtained:

~a2 sin2 u1L2!w01a2 sinu cosuv050,

a2 sinu cosuw01~a2 cos2 u1L2!v050. (64)

Equation~64! results in that the eigenvalue and the mode sh
are L252a2 and v05cotuw0. This means that the rigid-body
free-vibration motion is unstable. Moreover, when the trans
tional root spring constant is increased to a critical value fr
zero, the eigenvalueL2 is increased to zero from the value o
2a2. It is concluded that when the translational root spring co
stant is smaller than the critical value, the instability will occur

4.2.2 Unpretwisted Beam.Consider the free vibration o
rigid-body motion of a unpretwisted beam with infinite rotation
NOVEMBER 2001, Vol. 68 Õ 849



Table 1 Convergence pattern of dimensionless frequencies of a rotating pretwisted cantilever doubly tapered beam †B yy
Ä„1 – 0.1j…4cos 2 jpÕ6¿4„1 – 0.1j…4sin 2 jpÕ6, B zzÄ4„1 – 0.1j…4cos 2 jpÕ6¿„1 – 0.1j…4sin 2 jpÕ6, B yzÄ1.5„1 – 0.1j…4sin jpÕ3, aÄ3.0,
hÄ0‡

Number of
Subsections L1 L2 L3 L4 L5

5 5.100 7.791 23.747 44.036 63.632
10 5.119 7.775 23.802 43.897 63.790
20 5.124 7.771 23.817 43.861 63.836
30 5.124 7.770 23.820 43.854 63.844
40 5.125 7.770 23.821 43.851 63.848
50 5.125 7.769 23.821 43.850 63.849
60 5.125 7.769 23.822 43.850 63.850
70 5.125 7.769 23.822 43.850 63.850
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root spring constant and without the translational root spring. S
stituting the mode shapeW5w0 which satisfies the boundar
conditions ~52!–~55! into Eq. ~51!, the following condition is
obtained:

a2 sin2 u1L250, (65)

which satisfies the condition of instability~58!. Letting u50, one
obtains from Eq.~64! that the fundamental frequencyL is zero.
When the translational spring constant is increased, the fundam
tal frequency is increased from zero. The condition of instabi
~58! is satisfied until the translational root spring constant is lar
than a critical value. This means that when the translational
spring constant is smaller than a critical value, the condition~58!
will be satisfied and the instability will occur. Because for Ra
leigh and Timoshenko beams which the effect of rotatory inerti
considered their fundamendal frequencies are smaller than th
a Bernoulli-Euler beam under the same parameters, the cond
~58! for Rayleigh and Timoshenko beams is satisfied as soo
the condition for a Bernoulli-Euler beam is satisfied.
850 Õ Vol. 68, NOVEMBER 2001
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It is concluded that for both pretwisted and unpretwisted bea
with infinite rotational root spring constants the instability w
occur when the translational root spring constant is smaller tha
critical value.

5 Numerical Results and Discussion
To demonstrate the efficiency and convergence of the propo

method, the first five frequencies are determined for a rota
pretwisted cantilever doubly tapered beam. In Table 1, the con
gence pattern of dimensionless frequencies of the beam is sh
It shows that the natural frequencies determined by the propo
method converge very rapidly. Even when the number of subs
tions is only five, the differences between these solutions and
converged solutions are less than 0.5 percent.

For comparison, a uniformly pretwisted cantilever beam w
constant cross section is considered. The natural frequencies
tained by the proposed method as well as those given by Sub
manyam and Kaza@14# and Lin @12# are tabulated in Table 2
Table 2 Effect of inertia constant h on the dimensionless frequencies of a rotating pretwisted cantilever beam †B yyÄcos 2 jF
¿4 sin 2 jF, B zzÄ4 cos 2 jF¿sin 2 jF, B yzÄ1.5 sin 2 jF, a*ÄaÕ3.51602‡

F a*
Mode

Number

h50 h50.0001 h50.001

# ## present present present

30 deg 0 1 3.5245 3.5245 3.5245 3.5235 3.5149
2 6.9585 6.9585 6.9586 6.9526 6.8994
3 22.339 22.338 22.339 22.298 21.945
4 42.896 42.896 42.898 42.649 40.576
5 63.423 63.419 63.423 63.138 60.758

1 1 5.1824 - 5.1824 5.1804 5.1632
2 7.1461 - 7.1462 7.1386 7.0705
3 24.055 - 24.055 24.010 23.618
4 43.735 - 43.737 43.479 41.335
5 65.103 - 65.104 64.811 62.367

3 1 8.2156 - 8.2156 8.1990 8.0502
2 11.749 - 11.748 11.743 11.694
3 34.834 - 34.834 34.763 34.136
4 49.804 - 49.805 49.488 46.845
5 77.191 - 77.193 76.843 73.907

90 deg 0 1 3.5900 3.5899 3.5900 3.5882 3.5716
2 6.4847 6.4849 6.4850 6.4815 6.4500
3 24.531 24.530 24.530 24.457 23.833
4 37.457 37.459 37.460 37.317 36.096
5 72.973 72.962 72.965 72.470 68.460

1 1 5.1120 - 5.1121 5.1086 5.0780
2 6.8250 - 6.8253 6.8202 6.7753
3 26.041 - 26.039 25.960 25.281
4 38.533 - 38.536 38.385 37.102
5 74.400 - 74.392 73.887 69.798

3 1 7.9774 - 7.9776 7.9688 7.8908
2 11.804 - 11.804 11.792 11.688
3 35.872 - 35.871 35.755 34.741
4 46.044 - 46.047 45.841 44.101
5 84.936 - 84.929 84.353 79.672

#: given by Subrahmanyam and Kaza@14#; ##: given by Lin@12#
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Table 3 The frequency relations between rotating unpretwisted Bernoulli-Euler beams †hÄ0, rÄ0, B yyÄ„1 – 0.2j…3, m
Ä„1 – 0.2j…‡

a u L1
2 L2

2 L3
2 L2

22L1
2 L3

22L2
2

bTL→`
buL→`

2
0 deg 17.8707 450.0783 3223.7197 432.2076 2773.6414
45 deg 15.8707 448.0783 3221.7197 432.2076 2773.6414
90 deg 13.8707 446.0783 3219.7197 432.2076 2773.6414

6
0 deg 55.5119 648.9802 3750.9751 593.4683 3101.9949
45 deg 37.5119 630.9802 3732.9751 593.4683 3101.9949
90 deg 19.5119 612.9802 3714.9751 593.4683 3101.9949

bTL→`
buL550

2
0 deg 16.8900 421.6602 3023.3622 404.7702 2601.7020
45 deg 14.8900 419.6602 3021.3622 404.7702 2601.7020
90 deg 12.8900 417.6602 3019.3622 404.7702 2601.7020

6
0 deg 53.6052 616.3647 3540.1596 562.7595 2923.7949
45 deg 35.6052 598.3647 3522.1596 562.7595 2923.7949
90 deg 17.6052 580.3647 3504.1596 562.7595 2923.7949
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Subrahmanyam and Kaza@14# studied the vibration of a rotating
pretwisted cantilever beam by using the finite difference met
and the Ritz method. Lin@12# studied the vibration of a nonrotat
ing nonuniform pretwisted beam by using the modified trans
matrix method. Subrahmanyam and Kaza@14# did not consider
the effect of the rotatory inertia and the coupling effect of t
rotating speed and the mass moment of inertia. Without consi
ing these effects, i.e.,h50, excellent agreement is obtained b
tween the previous numerical results and those by the prop
method. Moreover, the effect of the inertia constanth will de-
crease greatly the natural frequencies. The effect of the ine
constanth on the natural frequencies of higher modes is relativ
greater than that on the natural frequencies of lower modes. As
rotating speeda increases, the effect of the inertia constanth on
the natural frequencies increases. The reason is that the cou
effect includes the product of the rotating speeda and the rotatory
inertia h.

The frequency relations~48! and ~59! between rotating un-
pretwisted Bernoulli-Euler beams is proved numerically in Ta
3. The frequency relations~47!–~50! among rotating pretwisted
beams are proved numerically in Table 4. A pretwisted cantile
beam with a small pretwisted angle is considered in Table 4.
shown that the prediction of frequency via the relations~47!, ~48!,
and ~50! is very accurate.

Figure 2 verifies the facts revealed in Sections 4.1.1 and 4
that the instability will happen to a pretwisted Rayleigh beam w
infinite translational root spring constants, but not to a pretwis
Bernoulli-Euler beam withr .0, u,p/4 andg215g4151. More-
Journal of Applied Mechanics
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over, the instability will happen to the pretwisted Rayleig
and Bernoulli-Euler beams with infinite rotational root sprin
constants.

The influence of the rotating speed on the first three natu
frequencies of doubly tapered beams with nonuniform pretwist
shown in Fig. 3. It is observed that the effect of the rotating sp
on the first two frequencies are almost the same for all th
systems. However, the effect on the higher mode frequencies
greatly different.

Figure 4 shows the influence of the total pretwist angleF on
the first four frequencies of cantilever beams with different ra
of area moment inertia in thez andy-directionsI ZZ(0)/I YY(0). If
the cross section of the beam is almost square, e
I ZZ(0)/I YY(0)52, the influence of the total pretwist angleF on
the frequencies is small. However, whenI ZZ(0)/I YY(0)5100, the
influence of the total pretwist angleF on the frequencies is grea
The influence on the frequencies of higher modes is greater
that on the frequencies of lower modes.

6 Conclusion
A solution procedure for the bending-bending vibration of

rotating nonuniform beam with arbitrary pretwist and an elas
cally restrained root is derived. A simple and efficient algorith
for deriving the semianalytical transition matrix of the gene
system with nonuniform pretwist is proposed. The algorithm c
be applied to linear control systems. The divergence in the Fro
nius method does not exist in the proposed method. The freque
Table 4 The prediction of the fundamental frequency Lb of pretwisted cantilever beams †aÄ0.1, haÄ0.001, rÄ1, B yy
Ä„1 – 0.1j…cos 2 Fj¿1000„1 – 0.1j…3sin 2 Fj, B zzÄ1000„1 – 0.1j…3cos 2 Fj¿„1 – 0.1j…sin 2 Fj, B yzÄ„5000„1 – 0.1j…3 – 0.5„1 – 0.1j……
sin 2 Fj‡

F ua La ub hb Lb L̄b

0 deg 3.62623 90 deg 0.00100076 3.62485 3.62485
0.1 deg 20 deg 3.62607 70 deg 0.00100058 3.62501 3.62501

40 deg 3.62566 50 deg 0.00100013 3.62543 3.62543
60 deg 3.62520 30 deg 0.00099942 3.62589 3.62589
0 deg 3.61501 90 deg 0.00100077 3.61363 3.61415

5 deg 20 deg 3.61493 70 deg 0.00100059 3.61387 3.61426
40 deg 3.61468 50 deg 0.00100013 3.61444 3.61453
60 deg 3.61439 30 deg 0.00099962 3.61509 3.61483
0 deg 3.53790 90 deg 0.00100080 3.53648 3.54079

15 deg 20 deg 3.53829 70 deg 0.00100061 3.53721 3.54051
40 deg 3.53920 50 deg 0.00100014 3.53895 3.53970
60 deg 3.54019 30 deg 0.00099960 3.54090 3.53870
0 deg 3.44536 90 deg 0.00100084 3.44391 3.45405

25 deg 20 deg 3.44647 70 deg 0.00100064 3.44536 3.45312
40 deg 3.44914 50 deg 0.00100015 3.44889 3.45065
60 deg 3.45212 30 deg 0.00099958 3.45285 3.44778

Lb : determined by using Eq.~48!
L̄b : substitutingLb into Eq. ~47!, hb is obtained. Further, determineL̄b by using the proposed method for the general system.
NOVEMBER 2001, Vol. 68 Õ 851
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relations among different systems are revealed. The mechan
of instability is discovered. The effects of several parameters
the instability of rotating beams is investigated. It is shown th

1 due to the coupling effect of the rotational speed and
rotatory inertia, when the rotating speeda increases, the effect o
the inertia constanth on the natural frequencies increases.

2 the effect of the rotatory inertia on the natural frequencies
higher modes is relatively greater than that on the natural frequ
cies of lower modes.

3 the instability does not happen to a unpretwisted Bernou
Euler beam with infinite translational root spring constant anr
.0. However, if the rotational root spring constant is smaller th

Fig. 2 The influence of the root spring constants on the insta-
bility of a pretwisted tapered beam †B yyÄ„1 – 0.1j…cos 2 pjÕ4
¿100„1 – 0.1j…3 sin 2 pjÕ4, B zzÄ100„1 – 0.1j…3 cos 2 pjÕ4
¿„1 – 0.1j…sin 2 pjÕ4, B yzÄ†50„1 – 0.1j…3 – 0.5„1 – 0.1j…‡sin pjÕ2,
aÄ2, uÄ30 deg, rÄ0.1‡

Fig. 3 The influence of the rotating speed a on the first three
natural frequencies of cantilever doubly tapered beams with
uniform and nonuniform pretwists †B yyÄ„1 – 0.1j…4 cos 2 w
¿100„1 – 0.1j…4 sin 2 w, B zzÄ100„1 – 0.1j…4 cos 2 w
¿„1–0.1j…4 sin 2 w, B yzÄ49.5„1 – 0.1j…4 sin 2 w, hÄ0.001, uÄpÕ3,
rÄ0.2; : wÄpj2Õ2; : wÄpÕ2 sin „jpÕ2…; : w
ÄpjÕ2‡
852 Õ Vol. 68, NOVEMBER 2001
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a critical value, the instability will happen to the Rayleigh an
Timoshenko unpretwisted beams with infinite translational spr
root constant,r .0 andu.0.

4 if the translational root spring constant is smaller than a cr
cal value, the instability will happen to Bernoulli-Euler, Rayleig
and Timoshenko unpretwisted and pretwisted beams with infi
rotational root spring constant.

5 the instability will not happen to a pretwisted Bernoulli-Eul
beam withr .0, g215g4151, g11.0, andg31.0. The instability
will happen to pretwisted Rayleigh and Timoshenko pretwis
beams.
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On the Internal Resonance of a
Spinning Disk Under Space-Fixed
Pulsating Edge Loads
Internal resonance between a pair of forward and backward modes of a spinning
under space-fixed pulsating edge loads is investigated by means of multiple scale m
It is found that internal resonance can occur only at certain rotation speeds at which
natural frequency of the forward mode is close to three times the natural frequency o
backward mode and the excitation frequency is close to twice the frequency of the
ward mode. For a light damping case the trivial solution can lose stability via b
pitchfork as well as Hopf bifurcations when frequency detuning of the edge load is va
On the other hand, nontrivial solutions experience both saddle-node and Hopf bifu
tions. When the damping is increased, the Hopf bifurcations along the trivial solution
disappear. Furthermore, there exists a certain value of damping beyond which
nontrivial solution is possible. Single-mode resonance is also briefly discussed
comparison. @DOI: 10.1115/1.1408616#
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Introduction

The vibration analysis of a spinning disk under space-fix
edge loads attracts attention because of its possible applicatio
such fields as circular saw cutting and grind wheel operat
Carlin and his co-workers’ investigation@1# appears to be the firs
paper attempting to calculate the natural frequencies of a spin
disk under a concentrated radial edge load. Radcliffe and Mote@2#
extended the work of@1# by considering a general concentrat
edge load with both radial and tangential components. Chen@3,4#
reformulated the problem with emphasis on the effects of rela
motion between the disk and the edge load on the stability
natural frequencies of the loaded disk. Recently Chen@5# ex-
tended these analyses by considering the parametric resonan
a spinning disk under space-fixed pulsating edge loads.

The plate model employed in@5# ignored the effect of mem-
brane stretching. As a consequence the equation of motion is
ear in terms of the transverse deflection and the stiffness t
involves a periodic coefficient which is due to the pulsating ed
load. This linearized model imposes two limits on the applicab
ity of the parametric resonance theory presented in@5#. First of all,
while the linearized model can predict the onset of parame
resonance, it cannot predict the amplitude of steady-state vibra
after parametric resonance occurs. Secondly, it cannot accoun
the complicated internal resonance phenomenon which is du
interaction between modes coupled by the nonlinear effect.

In this paper we extend our previous work@5# to consider the
nonlinear parametric resonance of a spinning disk under sp
fixed pulsating edge loads. Membrane stretching effect is ta
into account by employing von Karman’s plate model. We foc
our attention on the internal resonance between a pair of forw
and backward traveling waves with the same number of no
diameters and nodal circles. Galerkin’s procedure is used to
cretize the equations of motion. The multiple scale method is t
used to study the steady-state behavior and the stability of
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response. Both static and dynamic bifurcation phenomena are
cussed. The effects of damping on the bifurcation points are
studied in detail.

Equations of Motion
We consider an elastic circular disk spinning with consta

speedV. The disk is ‘‘partially’’ clamped@6# at the inner radius
r 5a and is subjected to a periodic radial load at the outer rad
r 5b. In circular saw and grinding wheel operations the rad
load is applied on a small sector of the outer edge. We assume
this space-fixed edge load can be expanded in a Fourier s
cosgt(k50

` Pk cosku. Pk has the dimension of stress, andg is the
excitation frequency of the in-plane edge load. The direction
the edge load remains unchanged when the disk vibrates late
The equations of motion of the spinning disk in terms of tran
verse displacementw and stress functionf can be written as@7#

rh~w,tt12Vw,tu1V2w,uu!1cfw,t1D¹4w

5hH w,rr ~r 21f ,r1r 22f ,uu!1~r 21w,r1r 22w,uu!f ,rr

22~r 21w,u! ,r~r 21f ,u! ,r2rV2r S r

2
¹2w1w,r D J (1)

¹4f52E@w,rr ~r 21w,r1r 22w,uu!

12r 23w,ruw,u2r 22~w,ru!22r 24~w,u!2#

12~12n!rV2 (2)

~r, u! are space-fixed polar coordinates. The parametersr, h, E, n,
andD are the mass density, thickness, Young’s modulus, Pois
ratio, and flexural rigidity of the disk, respectively.cf represents a
space-fixed homogeneous damping due to the surrounding a
writing Eq. ~2! the in-plane inertia is neglected. These two equ
tions are based on the famous von Karman’s plate model, wh
accounts for the membrane stretching due to bending.

It is noted that the total deflection of the disk cannot be deem
as the sum of the deflection components due to each Fourier c
ponent in the series because the edge load affects the stiff
operator instead of the forcing term. However, in Chen’s previo
work @4,5# on linear response in a similar loading situation
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observed through numerical simulation that the effects of e
Fourier component on the stability properties of the spinning d
are additive. In other words, if a Fourier component causes
stable vibration, then so does the general loading containing
particular Fourier component. As a consequence, it is possib
predict the behavior of the loaded disk by considering the effec
the general edge load as the combined effects of its individ
components. Along this line of thought we focus on the respo
of a spinning disk under a Fourier component cosgtPk cosku in
the following discussion.

The partially clamped boundary conditions for transverse
flection w at r 5a are

w50 (3)

w,r50. (4)

The boundary conditions atr 5b are

~¹2w!,r1r22~12n!~w,ruu2r21w,uu!1
hPk

D
cosgt coskuw,r50 (5)

w,rr 1nr 21~w,r1r 21w,uu!50. (6)

The in-plane boundary conditions atr 5b are

s ru50, (7)

s r5Pk cosgt cosku. (8)

We also require that

f,` at r 50. (9)

It is noted that while Eqs.~1! and~2! are nonlinear in terms o
w, they are linear inf. Therefore we can divide the stress functio
f in Eq. ~2! into three parts:

f5f11f21f3 . (10)

The first partf1 accounts for the stretching effect due to t
centrifugal force. The second partf2 accounts for the edge loa
effect. The corresponding stress fieldss rk , suk , ands ruk can be
found in a standard elasticity monograph@8#. The third partf3
involves nonlinear terms ofw. After substituting Eq.~10! in
Eqs. ~1! and ~2! and introducing the following dimensionles
quantities,

t* 5
t

b2AD

rh
, V* 5Vb2Arh

D
,

g* 5gb2Arh

D
, r * 5

r

b
, w* 5wA b

h3,

f* 5f
h

D
, cf* 5cf

b3

24~12n2!Arh3D
,

«512~12n2!
h

b
, h5

a

b
,

s r* 5
hb2

D
s r , Pk* 5

b3

12~12n2!D
Pk ,

we can rewrite the equations of motion in the dimensionless fo
after dropping the asterisks for simplicity,

w,tt12Vw,tu1V2w,uu1¹4w1Lw12«cfw,t1«Pk cosgtLkw

5w,rr ~r 21f3,r1r 22f3,uu!1~r 21w,r1r 22w,uu!f3,rr

22~r 21w,u! ,r~r 21f3,u! ,r (11)

¹4f352«@w,rr ~r 21w,r1r 22w,uu!

12r 23w,ruw,u2r 22~w,ru!22r 24~w,u!2#. (12)
Journal of Applied Mechanics
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Lk is the membrane operator associated with the stress field du
the edge load, andL is associated with the axisymmetrical stre
field due to the centrifugal force,

Lk[2
1

r F ]

]r S rs rk

]

]r
1s ruk

]

]u D1
]

]u S s ruk

]

]r
1

1

r
suk

]

]u D G
(13)

L[2
1

r F ]

]r S rs1r

]

]r D1
]

]u S 1

r
s1u

]

]u D G (14)

where

s1r5
31n

8
V2~12r 2! (15)

s1u5
1

8
V2@~31n!2~113n!r 2#. (16)

When the nonlinear terms ofw are neglected in Eqs.~11! and
~12!, the equations reduce to the one considered in@5#.

In the special case when«50, the solutionf3 in Eq. ~12! is
identically zero, and as a consequence Eq.~11! is reduced to

w,tt12Vw,tu1V2w,uu1¹4w1Lw50. (17)

Equation~17! is the equation of motion of a freely spinning dis
The natural frequency of a mode withn nodal diameters andm
nodal circles is denoted byvmn . The corresponding eigenfunctio
is complex and assumes the form

wmn~r ,u!5Rmn~r !einu. (18)

It is also noted that the eigenfunctionswmn are orthonormal.
Figure 1 shows the natural frequency loci of a spinning disk

the rotation speed varies. The clamping ratioh is 0.5, and the
Poisson ration is 0.27. Only the modes with less than four nod
diameters are shown here. The subscriptsf, b, andr of the mode
label ~m, n! represents forward, backward, and reflected mod
respectively@5#.

Discretization
The linear analysis in@5# predicts that when the spinning disk

subject to a space-fixed distributed edge loadP2n cosgt cos 2nu,
single-mode parametric resonance can occur when the excita
frequencyg is twice the natural frequency of an~m, n! mode.
Combination resonance involving two modes~m, n! and~p, q! can
also occur when the numbers of nodal diametersn and q satisfy
certain relations. In this paper we focus on the internal resona
between a pair of forward and backward~m, n! modes excited by
the in-plane edge load. We assume that solutionw(r ,u,t) of Eqs.
~11! and ~12! can be approximated in terms of eigenfunctio
wmn(r ,u) as

w~r ,u,t !5cmn~ t !wmn1 c̄mn~ t !w̄mn . (19)

Fig. 1 Natural frequency loci of a freely spinning disk
NOVEMBER 2001, Vol. 68 Õ 855
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Both cmn(t) and wmn(r ,u) in Eq. ~19! are complex functions,
while the displacementw(r ,u,t) is a real function.w̄mn represents
the complex conjugate ofwmn . In order to solvef3 in Eq. ~12!
we introduce a set of eigenfunctionsfmn satisfying the following
differential equation:

¹4fmn2bmn
4 fmn50. (20)

fmn satisfy the same boundary conditions asf3 does. After ex-
pressingf3 in terms of eigenfunction seriesfmn and following
Galerkin’s procedure, we can discretize Eqs.~11! and ~12! into

c̈mn12inV ċmn1kmncmn12«cf ċmn1«m c̄mn cosgt

1«aucmnu2cmn50 (21)

where

kmn5vmnvmn̄ (22)

m5pE
h

1F rs r ~2n!~Rmn,r !
21S n2su~2n!

r
2ns ru~2n!,r D ~Rmn!

2Gdr.

(23)

vmn andvmn̄ are the natural frequencies of the backward and
forward modes, respectively. It is noted thatvmn̄ is equal to
vmn12nV. Constanta can be obtained via numerical integratio
involving eigenfunctionswmn and fmn . ucmnu represents the ab
solute value of complex numbercmn .

Multiple Scale Method
We apply the method of multiple scale@9# to analyze the solu-

tion of Eq. ~21!. The method of multiple scale assumes an exp
sion of the solution in the form

cmn~ t !5cmn
~0!~ t,T1!1«cmn

~1!~ t,T1!1O~«2! (24)

where T1[et. Substituting~24! into ~21! and equating coeffi-
cients of like powers ofe yields

«0: D0
2cmn

~0!12inVD0cmn
~0!1kmncmn

~0!50 (25)

«1: D0
2cmn

~1!12inVD0cmn
~1!1kmncmn

~1!

522D1D0cmn
~0!22inVD1cmn

~0!22cfD0cmn
~0!

2aucmn
~0!u2cmn

~0!2m c̄mn
~0! cosgt (26)

where D0[]/]t, and D1[]/]T1 . The general solution of Eq
~25! can be written in the form

cmn
~0!5d1~T1!eivmnT01d2~T1!e2 ivmn̄T0. (27)

Substituting~27! into the right-hand side of~26! we observe that
there exist secular terms in three different cases. In the first
whenvmn̄ is close to 3vmn andg is close to 2vmn internal reso-
nance involving both modes will occur. In the second case w
vmn̄ is close to 3vmn andg is close to 2vmn̄ , only single-mode
resonance will be induced. In the third case whenvmn̄ is away
from 3vmn and g is close to 2vmn or 2vmn̄ , again only single-
mode resonance is possible. The second and the third cases a
same in essence. No combination resonance of the sum or d
ence type is possible when only this pair of modes are consid
@5#. In the following we focus on the internal resonance case.

Internal Resonance:vmn̄ is close to 3vmn and g is close
to 2vmn

In this case we assume that

g52vmn1«§1

vmn̄53vmn1«§2

where§1 and §2 are two independent detuning parameters. T
secular terms of Eq.~26! can be eliminated if
856 Õ Vol. 68, NOVEMBER 2001
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2i v̂mnD1d11 i2vmncfd11ad1~ ud1u212ud2u2!

2
m

2
~ d̄1ei §1T11d̄2ei ~§22§1!T1!50 (28)

2i v̂mnD1d21 i2vmn̄cfd22ad2~ ud2u212ud1u2!

1
m

2
d̄1ei ~§22§1!T150 (29)

wherev̂mn51/2(vmn1vmn̄). We expressd1 andd2 in the forms

d1~T1!5
1

2
a1~T1!eib1~T1! (30)

d2~T1!5
1

2
a2~T1!eib2~T1!. (31)

After substituting Eqs.~30! and ~31! into Eqs.~28! and ~29! we
can conclude that the nontrivial steady-state solutions ofa1 , b1 ,
a2 , andb2 must satisfy the following equations:

4v̂mn§1a12aa1~a1
212a2

2!12m~a1 cosc11a2 cosc2!50
(32)

4cfvmna12m~a1 sinc11a2 sinc2!50 (33)

4v̂mn~2§223§1!a21aa2~a2
212a1

2!22ma1 cosc250
(34)

4cfvmn̄a21ma1 sinc250 (35)

where

c15§1T122b1 (36)

c25~§22§1!T12b12b2 . (37)

It is noted that single-mode resonance is not possible in this c
A straightforward solution procedure to solve Eqs.~32! to ~35! for
nontrivial solutionsa1 , a2 , c1 , andc2 is described briefly in the
Appendix. The steady-state vibration of the spinning disk is th

w~r ,u,t !5Rmn~r !Fa1 cosS gt

2
2

c1

2
1nu D

1a2 cosS 3gt

2
2

c1

2
1c22nu D G1O~«!, (38)

which represents the superposition of two waves traveling in
posite directions. It is noted that the first term witha1 in Eq. ~38!
is excited directly by the edge load, while the second term witha2
is excited internally in a super-harmonic manner.

Stability Analysis
The stability of the steady-state solutions can be analyzed

expressingd1(T1) andd2(T1) as

d1~T1!5d1
~s!1d̂1~T1! (39)

d2~T1!5d2
~s!1d̂2~T1!. (40)

d1
(s) andd2

(s) are the steady-state solutions. After substituting E
~39! and~40! into Eqs.~28! and~29! and linearizing with respec
to the variationsd̂1(T1) and d̂2(T1) we can study the stability of
the steady-state solutions. For instance, in order to study the
bility of the trivial solutions we substitute

d1~T1!5@â1~T1!1 i b̂1~T1!#e~ i §1/2!T1 (41)

d2~T1!5@â2~T1!1 i b̂2~T1!#e~2 i3§1/21 i §2!T1 (42)

into Eqs.~28! and ~29! to obtain the Jacobian matrix@J# of the
linearized equations as
Transactions of the ASME
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4cfvmn m22§1v̂mn 0 m

m12§1v̂mn 4cfvmn m 0
. (43)
F 0 2m 4cfvmn̄ v̂mn~6§124§2!

2m 0 2v̂mn~6§124§2! 4cfvmn̄
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By calculating the eigenvalues of the Jacobian matrix, we
determine the stability of the trivial solutions. The stability of th
nontrivial solutions can be analyzed in a similar manner.

Steady-State Solutions
Figure 2 shows the amplitudes and phases of the steady-

solutions as functions of detuning parameter§1 for the internal
resonance between a pair of~0, 3! modes atV53.3. The param-
eters used in the calculation are«50.01, v0359.9, v03̄529.7,
m5100, cf50.5, anda50.4. The excitation frequencyg52v03
1«§1 . The solid and dashed curves represent stable and uns
solutions, respectively. The stable trivial solution undergoes a
percritical pitchfork bifurcation at§1523.11 ~point A!. From
point A the nontrivial solution branch is stable and undergoe
saddle-node bifurcation at point H(§150.90). On the other hand

Fig. 2 Amplitudes and phases of the steady-state response.
«Ä0.01, VÄ3.3, v03Ä9.9, v03̄Ä29.7, gÄ2v03¿«§1 , mÄ100, a
Ä0.4, and c fÄ0.5.

Fig. 3 Eigenvalues of the Jacobian matrix along the trivial so-
lution path of Fig. 2
Journal of Applied Mechanics
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the unstable trivial solution from point A undergoes a subcriti
pitchfork bifurcation at point B (§1520.64), creating an unstabl
nontrivial branch BH and a stable trivial branch BC. This stab
trivial solution then loses stability via a supercritical Hopf bifu
cation at§1520.33 ~point C!, creating a quasi-periodic solutio
c03 which cannot be shown in Fig. 2. The unstable branch
undergoes a supercritical Hopf bifurcation at point D (§150.33)
and creates a stable trivial branch DE. The branch DE then un
goes a supercritical bifurcation at point E creating a stable n
trivial branch EG and unstable trivial branch EF. The sta
branch EG then loses stability via a supercritical Hopf bifurcat
at point G creating a stable quasi-periodic solution~which again
cannot be shown in Fig. 2! and an unstable periodic solution. Th
trivial branch EF undergoes a subcritical pitchfork bifurcation
point F creating an unstable nontrivial branch and a stable tri
branch.

The bifurcation points along the trivial solution path can
verified by observing the eigenvaluesl of the Jacobian matrix@J#
in Eq. ~43! in Fig. 3. At points A, B, E, and F there exists a ze
eigenvalue, which implies a pitchfork bifurcation. On the oth
hand at points C and D there exist a pair of purely imagin
eigenvalues and the real part loci of the eigenvalues cross the
line ‘‘transversely,’’ which implies a Hopf bifurcation@10#.

To demonstrate the existence of quasiperiodic solutions
dicted by the multiple scale analysis we use Runge-Kutta met
to integrate Eq.~21! at §1520.32 ~a point slightly to the right of
point C in Fig. 2! with initial conditions c0350.1 and ċ0350.
Figure 4~a! shows the response history of the real part ofc03 after
a long period of time. Figure 4~b! shows its Poincare map re
corded fromt510,000 to 12,000 with the sampling rate equal
the excitation frequency. The sampling points fill up a small st

Fig. 4 „a… Quasi-periodic response and „b … the corresponding
Poincare map for §1ÄÀ0.32 with initial conditions c 03Ä0.1 and
ċ 03Ä0
NOVEMBER 2001, Vol. 68 Õ 857
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around a closed curve, which implies the quasi-periodic featur
the response. If the initial condition ofc03 is changed from 0.1 to
20, the response then settles to the stable branch AH in Fig.
shown in Fig. 5. The Poincare map in Fig. 5~b! records the sam-
pling points fromt54000 to 6000.

To observe the effects of damping we use the same param
as those in Fig. 2 but change the dampingcf from 0.5 to 1. The
amplitudes and phases of the steady-state solutions are sho
Fig. 6. We observe that the two Hopf bifurcation points C and
approach each other until they coalesce and disappear. Fur
more the Hopf bifurcation point G on the nontrivial solutio
branch moves to the right resulting in a longer stable branch

Bifurcation Points
The observations on the eigenvalue loci in Fig. 3 allow us

predict the bifurcation points on the trivial solution path analy
cally. For the Hopf bifurcation to occur a pair of the eigenvalu
of the Jacobian matrix~43! must be purely imaginary. By Routh
Hurwitz criterion we conclude that the detuning parameter§1H
must satisfy the equation

A2H§1H
4 1A1H§1H

2 1A0H50 (44)

where

Fig. 5 „a… Periodic response and „b … the corresponding Poin-
care map for §1ÄÀ0.32 with initial conditions c 03Ä20 and ċ 03
Ä0

Fig. 6 Amplitudes and phases of the steady-state response.
«Ä0.01, VÄ3.3, v03Ä9.9, v03̄Ä29.7, gÄ2v03¿«§1 , mÄ100, a
Ä0.4, and c fÄ1.0.
858 Õ Vol. 68, NOVEMBER 2001
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A2H51024v̂mn
4 vmnvmn̄

A1H564v̂mn
2 @80cf

2vmnvmn̄v̂mn
2 1m~4v̂mn

2 1vmnvmn̄!#

A0H54096cf
4vmnvmn̄v̂mn

4 164cf
2m2v̂mn

2 ~vmn
2 1vmn̄

2 !

2m4~4v̂mn
2 2vmnvmn̄!.

The roots of Eq.~44! correspond to points C and D in Fig. 2
Similarly, the detuning parameter§1P for pitchfork bifurcation
must satisfy

A2P§1P
4 1A1P§1P

2 1A0P50 (45)

where

A2P5144v̂mn
4

A1P54v̂mn
2 @16cf

2~8vmn
2 1vmn̄

2 !215m2#

A0P5256cf
4vmn

2 vmn̄
2 116cf

2m2vmn̄~2vmn2vmn̄!1m4.

The roots of Eq.~45! correspond to points A, B, E, and F in Fig
2. In Fig. 7 we plot the absolute values of the roots of Eqs.~44!
and ~45! as functions of dampingcf . It is observed that Hopf
bifurcation ceases to exist ascf exceeds 0.63, while pitchfork
bifurcation ceases to exist ascf exceeds 1.67. In other words, n
nontrivial solution is possible whencf is greater than 1.67. Thes
two special dampings, denoted bycf H andcf P , respectively, are
proportional tom, and can be obtained by solving

A0H50 (46)

A1P
2 24A2PA0P50, (47)

respectively. Both Eqs.~46! and ~47! are quadratic equations o
cf

2.

Single Mode Resonance:vmn̄ is close to 3vmn and g is
close to 2vmn̄

In this case we assume that

g52vmn̄1«§1 . (48)

The secular terms of Eq.~26! can be eliminated if

2i v̂mnD1d11 i2vmncfd11ad1~ ud1u212ud2u2!50 (49)

2i v̂mnD1d21 i2vmn̄cfd22ad2~ ud1u212ud2u2!1
m

2
d̄2e2 i §1T150.

(50)

Following a similar procedure as in the internal resonance case
can conclude that the steady-state solution ofa1 is zero and the
nontrivial steady-state solution ofa2 andb2 satisfy the following
conditions:

4cfvmn̄2m sinc250 (51)

Fig. 7 Pitchfork and Hopf bifurcation points along the trivial
solution path as functions of damping c f
Transactions of the ASME
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212m cosc214v̂mn§150 (52)

where

c25§1T112b2 . (53)

Therefore, only single-mode resonance is possible in this c
After eliminating c2 from Eqs. ~51! and ~52!, we derive the
square of the steady-state amplitudea2 as

a2
25

2

a
@2§1v̂mn6~m2216cf

2vmn̄
2 !1/2#. (54)

Nontrivial steady-state vibration begins to exist when

§1
2<

m2216cf
2vmn̄

2

4v̂mn
2 . (55)

Equation~55! can also be predicted by the linear analysis in@5#.
Figure 8 shows the amplitudea2 of the steady-state vibration as
function of §1 when the excitation frequencyg is close to twice
the natural frequency of mode (0,3)f . The parameters used in th
calculation are the same as those used in plotting Fig. 2.

Conclusions
In this paper we use multiple scale method to study the inte

resonance between a pair of forward and backward modes
spinning disk under space-fixed pulsating edge loads. Lin
analysis in@5# predicts that only single-mode parametric res
nance can occur when the excitation frequency is twice the na
frequency of the mode of interest. By considering the nonlin
effect resulting from von Karman’s plate model, however, inter
resonance is predicted in some special cases. Several conclu
are summarized as follows:

~a! Internal resonance can occur when the natural frequenc
the forward mode is close to three times the natural frequenc
the backward mode and the excitation frequency is close to tw
the frequency of the backward mode. In the case when the e

Fig. 8 Amplitude of the single-mode resonance. «Ä0.01, V
Ä3.3, v03Ä9.9, v03̄Ä29.7, gÄ2v03̄¿«§1 , mÄ100, aÄ0.4, and
c fÄ0.5.
Journal of Applied Mechanics
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tation frequency is close to twice the frequency of the forwa
mode, on the other hand, only single-mode parametric reson
is possible.

~b! For light damping case the trivial solution can lose stabil
via both pitchfork as well as Hopf bifurcations when frequen
detuning parameter is varied. On the other hand, nontrivial s
tions experience both saddle-node and Hopf bifurcations.

~c! When the damping is increased the Hopf bifurcations alo
the trivial solution path disappear. There also exists a cer
damping value beyond which no nontrivial solution is possible

Appendix
By eliminating c1 from Eqs.~34! and ~35! we can derive an

equation involving onlyg5a1
2 and f 5a2

2 in the form

p2~ f !g21p1~ f !g1p0~ f !50. (A1)

With use of Eqs.~34! and~35!, Eqs.~32! and~33! can be reduced
to

q4~ f !g41q3~ f !g31q2~ f !g21q1~ f !g1q0~ f !50 (A2)

pi andqi are functions off only. Equations~A1! and~A2! can then
be reduced to the following equation in terms off:

~m2p02m0p2!21~m2p12m1p2!~m0p12m1p0!50 (A3)

where

m25p0~p2q32p1q4!

m15p0~p2q22p0q4!2p2
2q0

m05p0p2q12p1p2q0 .

After solving a2 from Eq. ~A3!, we can obtaina1 from ~A1!.
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On the Optimal Shape of a
Rotating Rod
By using Pontryagin’s maximum principle we determine the shape of the lightest rot
rod, stable against buckling. It is shown that the cross-sectional area function is d
mined from the solution of a nonlinear boundary value problem. Three variational p
ciples for this boundary value problem are formulated and a first integral is construc
The optimal shape of a rod is determined by numerical integration.
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1 Introduction

Consider an elastic rod BC of lengthL, fixed at end B and free
at the other end. Suppose that the rod has a circular cross se
that its axis is straight, and that it rotates with the constant ang
velocity v about its axis. Letx-B-y be the rectangular Cartesia
coordinate system with the axisx oriented along the rod axis in
the undeformed state. LetP be a plane defined by the syste
x-B-y that rotates with the angular velocityv about thex-axis. At
a certain velocity the rod loses stability so that it could be b
under the action of centrifugal forces. If the rod is bent it w
assume a relative~with respect to the rotating planeP!, equilib-
rium configuration~see Fig. 1!. Note, however, that during the
motionbetween two relative equilibrium configurations~one cor-
responding to the initial state in which the rod axis is straight a
one in which the rod axis is bent! the axis of the rod is, in genera
not a plane curve. The problem of determining the critical rotat
speed and the post-critical behavior of the rod described has
the subject of many investigations. The first result for critical
tation speed, for prismatic rods with constant cross section,
presented by Stodola@1#. He credits Dunkerley for the first critica
speed calculation performed in 1895. Later the problem of de
mining critical rotation speed was treated by many authors.
mention the work of Odeh and Tadjbakhsh@2# that became clas
sic, Bazely and Zwahlen@3#, Parter@4#, Atanackovic@5,6#, and
Clément and Descloux@7#. In all of these works the classica
Bernoulli-Euler theory of rods was used. For a review of gene
ized rod theories used in stability analysis of rotating rods,
Antman @8# and Atanackovic@9#.

Our intention in this work is to formulate an optimization pro
lem for a rotating rod by using the procedure presented
Atanackovic and Simic@10#. Suppose that the angular veloci
with which the rod rotatesv5v05const. and length of the rodL
are given. LetS be the arc length of the rod axis, so thatS
P@0,L#. We definethe optimal rotating rodas the rod so shape
that it will lose stability for v.v0 while any other rod of the
same length~in our case equal toL! and equal or smaller volume
will lose stability for v<v0 .

Thus, the optimal rotating rod will be the lightest rod of leng
L that is stable against buckling for 0<v<v0 . Similar problems
for a centrally compressed column were treated by many auth
We mention the works of Clausen@11#, Blasius@12#, Ratzersdor-
fer @13#, and Keller @14# where the most complete analysis
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given. For a historical account on the problem of a compres
optimal column see Cox@15# and the discussion following tha
paper.

In solving the problem of determining the shape of an optim
rotating rod we shall use the procedure based on Pontryag
maximum principle with the special identification of the ‘‘state
and ‘‘costate’’ variables as in Atanackovic and Simic@10#. For the
relevant equations describing the optimal rotating rod, that
believe are new, we formulate three variational principles. On
basis of these variational principles we shall find a first integ
corresponding to Euler-Lagrange equations. This first integra
used to check the accuracy of numerical integration.

2 Model
The equilibrium, geometrical, and constitutive equations for

rotating rod are

H850, V852r0v2ȳ, M 85V cosu2H sinu, (1a)

x̄85cosu, ȳ85sinu, (1b)

u852
M

EI
, (1c)

whereH andV are components of the contact force in an arbitra
cross section,M is the bending moment,u is the angle between
the axis of rotation and tangent to the rod axis, andx̄ and ȳ are
coordinates of an arbitrary point with respect to the rotating C
tesian framex-B-y. Also in ~1! we user0 to denote line density
of the rod~mass per unit length of the rod axis!, E is modulus of
elasticity,I is the second moment of the cross-sectional area of
rod, and (•)85d(•)/dS. Note thatr05rA wherer is the density
of the rod~mass per unit volume!. We assume that the cross se
tion of the rod is circular, so that

I 5aA2, (2)

whereA is the cross-sectional area anda5(1/4p). With this no-
tation, the volume of the rod is

-
us-
eler,

04-
elf

Fig. 1 Coordinate system used
2001 by ASME Transactions of the ASME
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W5E
0

L

A~S!dS. (3)

By using the dimensionless variables and parameters

t5
S

L
, a5

A

L2 , y5
ȳ

L
, w5

W

L3 , (4a)

m5
M

EaL3 , v5
V

EaL2 , l25
rv2L2

Ea
, (4b)

and a new dependent variable

u52
v
l

, (5)

we obtain from~1a!–~1c!

u̇5lay, ṁ52lu cosu, ẏ5sinu, u̇52
m

a2 . (6)

The boundary conditions corresponding to the rod shown in Fi
are

u~1!50, m~1!50, y~0!50, u~0!50. (7)

The system~6!, ~7! possesses a trivial solution, in which the ax
of the rod remains straight for any value of the dimensionl
rotation speedl, in the form

u050, m050, y050, u050. (8)

To examine stability of the equilibrium configuration~8! we use
the Euler method. Thus, we assume that

u5u01Du, m5m01Dm, . . . , u5u01Du, (9)

where Du, . . .Du, denote perturbations of the correspondi
variables. Then, by substituting~9! into ~6! and linearizing the
resulting expressions, we obtain~omitting D in front of perturbed
variables!

S u̇

aD •5lu, ~ u̇a2!•5lu, ẏ5u, (10a)

subject to

u~1!50, u̇~0!50, u~0!50, u̇~1!a2~1!50, y~0!50.
(10b)

For the bifurcation it is enough to consider

S u̇

aD •5lu, ~ u̇a2!•5lu, (10c)

subject to

u~1!50, u̇~0!50, u~0!50, lim
t→1

u̇~ t !a2~ t !50.

(10d)

By introducing new variablesu5w1 , u̇5w2 , u5w3 , u̇5w4 and
the vectorw5@w1 ,w2 ,w3 ,w4#, the system~10c!, ~10d! can be
written in compact form as

F~l!w5
d

dt FA
d

dt
wG1lBw50, (10e)

whereA andB are given as

A5F 0 1/a 0 0

0 0 0 0

0 0 0 0

0 0 0 a2

G ; B5F 0 0 1 0

0 0 0 0

0 0 0 0

1 0 0 0

G . (10f)

Note that the boundary condition (10d)4 that corresponds to
m(1)50 is equivalent tou̇(1)50 if a(1)Þ0. However, ifa(1)
Journal of Applied Mechanics
. 1

is
ss

g

50 ~as will be in our analysis! the conditionm(1)50 can be
satisfied withu̇(1)Þ0. For fixedl the existence of a nontrivia
solution of ~10c!, ~10d! is a necessary condition for the loss
stability.1 The dimensionless volume of the rod is given as

w5E
0

1

a~ t !dt. (11)

We state now the following optimization problem:
Givenl determinea(t).0 for tP(0,1) so thatl is the smallest

eigenvalue of~10c!, ~10d! and that at the same timew given by
~11! is minimal.

We call the rod with sucha(t) the optimal rod. Thus, the opti-
mal rod is so shaped that any other rod with smaller volumew
will buckle at a rotation speed that is smaller thanl.

We coment on the boundary value problem~10a!–~10f!. In it l
must be an isolated eigenvalue in order that nonlinear equilibr
equations have bifurcation point atl and we assume this to b
true. However, the boundary condition (10b)4 is not standard and
is of the type analyzed by Keller and Niordson@17#. Cox and
McCarty @18# pointed out that the assumption about isolated
genvalue may be violated if the cross-sectional areaa(t) vanishes
too severe whent→1. Thus, in principle, our assumption may b
checked by the method similar to the one presented in@18#. This
rather delicate analysis is outside the scope of the paper.

3 The Optimization Problem and Its Solution
Let x1 , . . .x4 be a set of dependent variables defined by

u5x1 , ~ u̇/a!5x2 , u5x3 , ~a2u̇ !5x4 . (12)

Then, the system~10a!, ~10b! becomes

ẋ15ax2 , ẋ25lx3 , ẋ35
x4

a2 , ẋ45lx1 , (13a)

subject to

x1~1!50, x2~0!50, x3~0!50, x4~1!50. (13b)

The problem of determining the shapea(t) of the optimal rod
may be stated, in terms of the optimal control theory, as determ
the ‘‘control’’ function a(t).0, tP(0,1) that minimizes the func-
tional

I 5E
0

1

a~ t !dt, (14)

when the system is described by~13!. To solve the optimization
problem we use Pontryagin’s maximum principle~see Sage and
White @19# and@20#!. For other applications of Pontryagin’s prin
ciple for design problems see Pierson@21# and Carmichael
@22,23#.

For system~13! the Hamiltonian functionH is

H5a1p1ax21p2lx31p3

x4

a2 1p4lx1 , (15)

where the costate variablesp1 , . . . p4 satisfy

ṗ152
]H
]x1

52lp4 , ṗ252
]H
]x2

52p1a,

ṗ352
]H
]x3

52lp2 , ṗ452
]H
]x4

52
p3

a2 , (16a)

subject to

1In fact a necessary condition for bifurcation at the point (u0 ,m0 ,y0 ,l) for the
nonlinear system of Eqs.~6!, ~7! is that l belongs to the spectrum of the linea
differential operator F(l). Thus, if l is an eigenvalue ofF(l) the point
(u0 ,m0 ,y0 ,l) is a latent bifurcation point~see @8#!. The sufficient condition for
bifurcation at an eigenvalue ofF(l) are given in Chow and Hale@16#.
NOVEMBER 2001, Vol. 68 Õ 861
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p1~0!50, p2~1!50, p3~1!50, p4~0!50. (16b)

The optimality condition min
u

H(t,x1 ,x2 ,p1 ,p2 ,a) leads to

]H
]a

511p1x222p3

x4

a3 50. (17)

By solving ~17! for a we obtain

a5H 2p3x4

11p1x2
J 1/3

. (18)

A further procedure simplifies significantly if we make the follow
ing observation~used in a similar context in@10#!: The solution of
the boundary value problem~13! leads to a solution of the bound
ary value problem~16! if we make the following identification:2

p1~ t !5x2~ t !; p2~ t !52x1~ t !, p35x4 , p452x3 .
(19)

By using ~19! the control variablea(t) given by ~18! becomes

a5H 2~x4!2

11~x2!2J 1/3

. (20)

Note that with~19! substituted in~17! we have (]2H/]a2).0 so
that the necessary condition for minimum ofH is satisfied. From
~20! and the boundary condition (13b)4 we conclude that

a~1!50. (21)

Thus,the optimal rod is tapered so that it has zero cross-sectio
area and zero moment of inertia at its free end. Also, when the
original variables~see~12!! are used in~20! we obtain

a3u̇2

a21u̇2 5
1

2
. (22a)

By using the boundary condition~10b! in ~22! we get

a~0!u̇2~0!5
1

2
. (22b)

We now transform the conditions of optimality~20!. First we
write it in the form

11~x2!25
2~x4!2

a3 5
2a4u̇2

a3 52au̇2. (23)

Note that from~23! we conclude thata(t)Þ0 for tP(0,1). Thus,
the eigenvalue in~10e! is simple, if it exists. Next by differenti-
ating ~23! and by using~12!, ~13! we get

~au̇2!•5luS u̇

aD , (24)

as the optimality condition. Now we transform the system~10a!
as follows: Integrate (10a)1 to obtain

S u̇

aD5lE
0

t

u~j!dj, (25)

where we used the fact thatu̇(0)50 anda(0)Þ0 ~see (10b)2 and
~22b!!. Substituting~25! into ~24!, integrating and using~22b!, we
get

au̇25l2E
0

tFu~j!E
0

j

u~z!dzGdj1
1

2
. (26)

Sinceẏ5u ~see (10a)3) the Eq.~26! that represents the conditio
of optimality, may be written as

2There is one more possibility to connect the solutions of~13! and ~16!. This is
given by the following identification of dependent variables:p152x2 , p25x1 ,
p352x4 , p45x3 . However, this identification is not of interest since it does n
provide a(t)>0 in ~18! and (]2H/]a2).0 with H given by ~15!.
862 Õ Vol. 68, NOVEMBER 2001
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aÿ25
1

2
@11l2y2#. (27)

Finally by differentiating (10a)2 and by using~25! we get

~ u̇a2! ..5~ ÿa2! ..5lu̇5l2aE
0

t

u~j!dj5l2ay. (28)

Therefore the optimal shapea(t) of the rotating rod is determined
from the solution of the system~27!, ~28!:

~ ÿa2! ..5l2ay aÿ25
1

2
@11l2y2#, (29a)

subject to

y~0!50, ẏ~0!50, lim
t→1

ÿ~ t !a2~ t !50, lim
t→1

$@ ÿ~ t !a2~ t !# .%

50. (29b)

We analyze next system~29!.

4 Variational Principles for the System „29…
In this section we shall formulate three different variation

principles corresponding to the system~29!. Also we shall con-
struct a conservation law~the first integral! corresponding to~29!.

„a… The Variational Principle With Two Arguments. Let
W1 be the linear function space defined as

W15$w5~y,a!:yPC4~0,1!;y~0!5 ẏ~0!50;

aPC2~0,1!;a>0, a~1!50%. (30)

Consider the functional

I 1~y,a!5E
0

1

F1dt, (31a)

with the Lagrangian function

F15a2ÿ22l2ay221. (31b)

Suppose further that we want to determine the minimum ofI 1 on
W1 . We claim thatI 1 is stationary on the solution of~29!. To
prove this note that the condition of stationarity, i.e., vanishing
the first variationdI 1 , leads to the following Euler-Lagrang
equations:

~ ÿa2! ..5l2ay, aÿ22
l2

2
y22

1

2
50, (32a)

and natural boundary conditions

ÿ~1!a2~1!50, $@ ÿ~ t !a2~ t !# .% t5150. (32b)

The system~32! is equivalent to~29!.

„b… The Variational Principle With one Argument. We
can write system~29! as a single differential equation of fourt
order if we calculatea from ~29a!2 and then substitute the result i
~29a!1. Thus we obtain

F 1

ÿ3 ~11l2y2!2G ..

22l2y
~11l2y2!

ÿ2 50, (33a)

subject to

y~0!50, ẏ~0!50,

1

4ÿ3~1!
@11l2y2~1!#250, S H 1

4ÿ3~ t !
@11l2y2~ t !#2J .D

t51

50.

(33b)

Consider the space

W25$y:yPC4~0,1!;y~0!5 ẏ~0!50%, (34)
ot
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I 25E
0

1

F2dt, (35a)

with Lagrangian function

F25
~11l2y2!2

ÿ2 . (35b)

Then the Euler-Lagrange equation corresponding todI 250 is
equivalent to~33!. Note that the natural boundary conditions f
the minimization ofI 2 on the set~34! are identical to~33b!.

„c… The Canonical Formalism. The variational principle
dI 250 could be used to write~29! in canonical form. We define a
variable~a ‘‘momentum’’! p as

p5
]F2

] ÿ
522

~11l2y2!2

ÿ3 . (36)

Then, the Hamiltonian function is

H25pÿ2F252
3

22/3 p2/3~11l2y2!2/3. (37)

With ~37! the canonical equations

ÿ5
]H2

]p
, p̈5

]H2

]y
, (38)

become

ÿ52F2
~11l2y2!2

p G1/3

, p̈5224/3l2yF2
p2

~11l2y2!G
1/3

,

tP~0,1!. (39a)

From ~29b! and ~36! we obtain the boundary conditions corr
sponding to the system~38a! as

y~0!50, ẏ~0!50, p~1!50, p~1!50. (39b)

Consider the spaceW3

W35$w5~y,p!:yPC2~0,1!;y~0!5 ẏ~0!50;

pPC2~0,1!;p~1!50, ṗ~1!50% (40)

and the problem of determining the minimum onW3 of the func-
tional

I 35E
0

1

F3dt, (41)

with

F35 ẏṗ2
3

22/3 p2/3~11l2y2!2/3. (42)

It is easy to see that the conditiondI 350 reproduces the system
~39!. However, sinceF3 does not depend explicitly ont we have
a Jacobi type of first integral for~39! in the form

ẏṗ1
3

22/3 p2/3~11l2y2!2/35const. (43)

We determine now the constant in~43!. By using the boundary
conditions (39b) it follows that

ẏṗ1
3

22/3 p2/3~11l2y2!2/35C5
3

22/3 @p~0!#2/3. (44)

We shall use~44! to check numerical integration of the syste
~39!. Namely we shall, in each step of numerical integration, c
culate the left-hand side of~44! and compare so obtained valu
with the constant on the right-hand side.
Journal of Applied Mechanics
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Finally we note that with~y, p! known, the cross-sectional are
a(t) is determined from Eqs.~27! and ~36! so that

a5a~ t !5F p2

25~11l2y2!G
1/3

. (45)

5 Numerical Results
The system~39! is integrated by using the Runge-Kutta doub

precision procedure. Note that the pointt51 is a singular point
for the system~39! so that the equation~39a!1 cannot be satisfied
at t51. Thus we proceeded as follows: We constructed a seque
of numerical solutions (yn ,pn), n51,2, . . . with yn(0)5 ẏn(0)
50 andyn(t).0, ẏn(t).0, pn(t),0, ṗn(t).0 for tP(0,1) and
pn(1)52«n , ṗ(1)5dn with the constants«n.0, dn.0. For
each solution (yn ,pn) the values of variablespn(0) and ṗn(0)
and the cross-sectional areaan5an(«n ,dn) and are determined
~an is determined according to~45!!. Then, the optimal cross
sectional areaa(t) and corresponding initial valuesp(0) and
ṗ(0) are obtained as liman , lim pn(0), and limṗn(0) when«n
→0, dn→0, respectively.

We performed the calculations forl5A10 and obtainedp(0)
520.195077 andṗ(0)50.379104. In Fig. 2 we show the solu
tion of a(t) calculated according to~45!. The accuracy of integra-
tion was controlled by evaluation of the first integral~44! in each
step of integration. The left-hand side in~44! was constant and
equal to(3/22/3)@0.1950772#1/350.6356 up to 1026.

From ~45! we obtain a(0)5(p2(0)/25)1/350.10595. The di-
mensionless volumew of the optimal rod is determined by usin
~11! and ~45!. For l5A2 10 we obtain

w5E
0

1

a~ t !dt50.03712. (47)

We show next that with the solution of~39! for singlel we can
determine the solution for anyl. Let ~y, p! be the solution of the
problem ~39! and let a(t) be corresponding cross section ar
determined for the specified value of the dimensionless rotatiol.
Let (ŷ,p̂) andâ(t) be the corresponding functions determined f
the dimensionless rotation speedL5bl, with the constantb
given. By using~39! and~45! it is easy to show that the following
relations hold:

ŷ5
1

b
y; p̂5b3p; â5b2a. (48)

Thus, with the solution for singlel we have solution for anyL.
We compare now the volume of the optimal rod and the r

with constant circular cross section if both are stable up to
same angular velocityv. Suppose that both rods are made of t
same material, i.e.,E,r are the same. Also we assume that bo
rods lose stability at the same angular velocityv. For the rod with
constant circular cross section we have~see@6#!

Fig. 2 The optimal cross-sectional area
NOVEMBER 2001, Vol. 68 Õ 863
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l̂5
rAv2L4

EI
512.362, (49)

whereI 5aA2 with A5const. From~4b! we have

l25
rv2L2

Ea
510. (50)

With ~49!, ~50! we obtain

l2

l̂
5

A

L2
. (51)

Rod with constant cross sectionA has the volumeWconst.5AL
while the volume of the optimal rod isWoptimal5wL3. By using
~50! we obtain

Wconst.5
l2

l̂
L3, (52)

so that

Woptimal

Wconst.
5

l̂

l2 w50.04589. (53)

Therefore, the volume of the optimal rotating rod is just 4.
percent of the volume of the rod that has the same length and
constant cross section! Note also that from~51! the dimensionless
cross-sectional area of the rod with constant cross section
comesaconst.50.80893L2. Therefore for the circular cross sectio
the ratio of the radius of the optimal rod fort50, i.e., r (0) and
the radius of the rod with constant cross sectionR is (r l(0)/R)
50.362. In Fig. 3 we show the radius of the optimal rod and r
of the constant cross section that lose stability at the same an
speed.

6 Conclusions
In this paper we analyzed the problem of determining the sh

lightest rotating rod. Our main results are as follows:

Fig. 3 Optimal rod and rod with constant cross section
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1 We derived the system of differential Eqs.~29! that deter-
mine the optimal cross sectiona(t) and the shape of the rod in th
first buckling modey(t). For this system we derived three diffe
ent variational principles. Then we transformed the system~29! in
the canonical form~39!. Finally we derived a first integral for the
~39! in the form ~43!.

2 From Eq.~21! we concluded that the optimal rod is tapered
the free end. By numerical integration we determined the optim
shape of the rod.

3 The optimal rod has the volume of only 4.59 percent of t
rod with constant cross section that loses stability at the sa
rotation speed.
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Rectangular Cross Section
The exact theory of linearly elastic beams developed by Ladeve`ze and Ladeve`ze and
Simmonds is illustrated using the equations of plane stress for a fully anisotropic e
body of rectangular shape. Explicit formulas are given for the cross-sectional mat
operators that appear in the special Saint-Venant solutions of Ladeve`ze and Simmonds
and in the overall beamlike stress-strain relations between forces and a momen
generalized stress) and derivatives of certain one-dimensional displacements and a
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conditions in which the generalized displacement vanishes rather than pointwise disp
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1 Introduction
Ladevèze @1,2# and Ladeve`ze and Simmonds@3,4# have devel-

oped anexact theoryof linearly elastic prismatic beams of arb
trary cross section. In@1# and @2#, there are no body forces o
tractions on the lateral sides of the beam, whereas in@3,4# such
loads may be present. In these papers,~extended! Saint Venant
solutions play a key role.

This beam theory is ‘‘exact’’ in the sense that one-dimensio
beamlike equations are obtained from the three-dimensional e
tions of linear elasticitywithout any hypotheses or approximation
whatsoever. Thus, the exact theory is not asymptotic and no
peal is made to small slenderness ratios. Thegeneralized stressof
the exact theory is the same as in conventional beam the
namely, the net forces and moments acting over any cross sec
The heart~and novelty! of the exact theory lies in the definition o
the conjugate generalized displacement, which comprises
displacement-like and a rotation-like quantities, defined, not
certain cross-sectional averages of three-dimensional disp
ments, but rather as cross-sectional integrals involving the th
dimensional displacements, the three-dimensional stresses,

elastic operatorsA, B, A
0

, andB
0

. With the aid of these definitions
any problem for a beamlike body can be decomposed exactly
an interior part, explicitly computable from the solutions of t
associated one-dimensional exact beam equations, and a dec
edge-effect part, as shown in@1–4#.

The calculations in@1–4# are, at times, a bit heavy, even und
the assumption of a certain degree of elastic symmetry. Moreo
the cross-sectional elastic operators are not computed explic

The present paper is designed to present a relatively simple
realistic exposition ofsomeof the ideas in@1–4#. All our calcu-
lations are explicit and analytic. Moreover, we make no assu
tions on elastic symmetry. Thus, by considering a beam of nar
rectangular cross section, subject to prescribed end loads a
displacements only, we may take our reference equations as t
of linear plane stress theory rather than those of more complic

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
12, 2001; final revision, June 2, 2001. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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three-dimensional elasticity. Our final results—one-dimensio
beamlike equations relating a generalized stress, (T,Q,M ), to a
generalized displacement, (u,v,v)—suggest a rational definition
of built-in boundary conditions, namely, that the generalized d
placement vanishes. This, in turn, implies that the correspond
displacements of plane stress theorydo not vanish at a built-in
boundary. If, on the other hand, one insists that ‘‘built-in’’ mea
the pointwise vanishing of these displacements, then, to derive
proper kinematic boundary conditions for the exact beam the
one must first solve a set of auxiliary ‘‘canonical’’ plane stre
problems, following Ladeeze@5#, as we show.

2 The Dimensionless Equations of Plane Stress Theor
Consider a rectangular beam of widthW, depth 2H, and length

Hl, and let (x1 ,x2)5(x,y), 0<x< l , 21<y<1, be a pair of
dimensionless planar Cartesian coordinates, withx lying along the
centerline of the beam. Further, withE denoting some nomina
Young’s modulus, let eab , Esab5E(s,t,sy), and Hua
5H(U,V) denote, respectively, the physical~Cartesian! compo-
nents of the strains, stresses, and displacements of plane s
theory.~As the notation suggests, we shall switch between Ca
sian tensor notation and conventional, extended notation, as
venient and without comment.!

The field equations of plane stress theory comprise the equ
rium equations

sab,b50, sab5sba , (1)

and the strain-displacement-stress relations

eab51/2~ua,b1ub,a!5Cablmslm , (2)

where a comma followed by a subscript denotes differentiat
with respect to the variable with that subscript. Here, the dim
sionless elastic coefficients possess the standard symmetries

Cablm5Clmab5Cbalm . (3)

~Our analysis could be extended to elastic coefficients that v
with depth.! The lateral sides of the beam are stress free so th

t~x,61!5sy~x,61!50. (4)

We take the beam to be cantilevered, but refrain at this point fr
being more specific about the end conditions.
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3 The Saint-Venant Solution
The easiest way to define this solution in plane stress theo

to satisfy~1! identically by introducing the Airy stress functionf
so that

sab5«al«bm f ,lm , (5)

whereeab is the two-dimensional alternator. On substituting~2!
and ~5! into the compatibility equation

«al«bmeab,lm50, (6)

we obtain the well-known fourth-order partial differential diffe
ential equation forf. Writing out the first two terms explicitly
~which is all we need! and dividing byC1111, we have

f ,yyyy2k f ,xyyy1¯50, (7)

where

k[4C1112/C1111. (8)

The Saint-Venant solution for fis now defined to be

f SV5 f
0

~y!1x f
1

~y!, (9)

where, from~7!,

f
1

5A1y1A2y21A3y3 (10)

and

f
0

5B2y21B3y31~k/4!A3y4. (11)

In ~10! and ~11!, we have discarded null-stress terms. The ax
and shear stresses follows from~5! and ~9!–~11! as

sSV52B216B3y13kA3y21x~2A216A3y!
(12)

tSV52~A112A2y13A3y2!, sy
SV50.

The face conditions~4! of zero traction yield

A1523A3 , A250. (13)

The remaining unknown constants are related as follows to
net forces,EHW(T,Q), and the moment,EH2WM, acting over
any cross section:

T5E
21

1

sdy54B212kA3 , Q5E
21

1

tdy54A3

(14)

M52E
21

1

ysdy524~B31xA3!.

The dimensionless forces and moment satisfy the overall~beam-
like! equilibrium equations

T,x50, Q,x50, M ,x1Q50. (15)

Thus, Airy’s stress function takes the explicit form

f SV5~1/4!y2T2@~k/8!y22~k/16!y41~3/4!xy#Q

2~1/4!M ~x!y3. (16)

Moreover,~12! can now be written

sSV5A
0

~y!"T1B
0

~y!M ~x!, (17)

where

sSV5FsSV

tSVG , T5F T
QG , A

0

5F1/2 ~k/4!~3y221!

0 ~3/4!~12y2!
G ,
866 Õ Vol. 68, NOVEMBER 2001
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B
0

5F2~3/2!y
0 G . (18)

Next, we compute the Saint-Venant displacements. From~2!,
with a5b52, and~5!, we have, on integrating with respect toy,

VSV5 v̄~x!1C2211f , y
SV~x,y!22C2212f , x

SV~x,y!, (19)

where v̄(x) is a function of integration. Inserting~16! into this
expression, using (15)3 to replaceM 8(x) by 2Q, setting

v[ v̄~x!2~3/4!C2211xV (20)

so thatVSV(x,0)5v(x), and noting thatC22115C1122, we find
that

VSV5v~x!1~1/2!C1122yT1@~k/4!C1122~y221!

1~1/2!C1222~32y2!#yQ2~3/4!C1122M ~x!y2

[v~x!1A21~y!T1A22~y!Q1B2~y!M ~x!. (21)

Next, from ~2!, with a51, b52, ~5!, (15)3 , and~21!,

U, y
SV52v̄~x!2~3/4!C1122y

2Q12C1211f , yy
SV~x,y!

24C1212f , xy
SV~x,y!, (22)

wherev̄5v8. Thus, integrating with respect toy, using (15)3 and
~16!, absorbing the term2(3/2)C1211xQ into the function of in-
tegrationu(x) that arises, and setting

v̄[v~x!1~1/2!C1211T14C1212Q, (23)

we have

USV5u~x!2v~x!y1~1/2!C1211yT2@~k/2!C1211~12y2!

1C1212~11y2!1~1/4!C1122y
2#yQ2~3/2!C1211M ~x!y2

[u~x!2v~x!y1A11~y!T1A12~y!Q1B1~y!M ~x!. (24)

Thus, we may write~21! and ~24! in the form

USV5u~x!2v~x!yi1A~y!"T1B~y!M ~x!, (25)

where

U5FUV G , u5Fuv G , (26)

andA5@Aab(y)#, B5@Ba(y)#T.
Finally, substituting~24! into ~2!, with a5b51, noting ~8!,

and using~16!, we find that

u8~x!2v8~x!y5~1/2!C1111T1~1/2!C1112Q2~3/2!C1111M ~x!y.
(27)

Thus,~20!, ~23!, and~27! imply that

F «
g
x
G[F u8

v82v
v8

G5LF T
Q
M
G , (28)

where

L5F ~1/2!C1111 ~1/2!C1112 0

~1/2!C1112 4C1212 0

0 0 ~3/2!C1111

G . (29)

The beamlike strain-stress relations~28! are notable becaus
they areidentical—not merely of the same form—as the strai
stress relations for a beam underarbitrarily prescribed end loads
and/or displacements~consistent with global equilibrium!. This is
shown for general beams in@1–4# and is shown in the next sectio
for anisotropic beams of narrow rectangular cross section. N
also that the exact beam theory is of Rankine-Timoshenko t
with the added feature that, in an anisotropic beam, the axial fo
T also contributes to the shear straing. Finally, note that if we
choose our nominal Young’s modulusE so thatC111151 ~as we
may always do!, then the material matrixL given by~29! depends
on two-dimensional elastic constants only,C1112 and C1212, the
Transactions of the ASME
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remaining three,C1122, C1222, andC2222, having no influence on
the exact one-dimensional beam theory that emerges from p
stress theory.

4 The Betti-Rayleigh Reciprocity Principle and the
Generalized Displacement

Let s5@s,t#T and consider any two solutionss5(U,s) and
s̄5(Ū,s̄) of the field equations of plane stress,~1! and ~2!, that
satisfy the face condition of no traction,~4!. Further, let

@s,s̄#x[E
21

1

~s"Ū2s̄"U!xdy. (30)

Then the Betti-Rayleigh Reciprocity Principle implies that

@s,sSV#a5@s,sSV#x ;@a,x##@0,l # (31)

That is,@s,sSV#x is a constant.
Introducing the representations~17! and~25! into ~30!, we find

that

@s,sSV#x5T"@u~x!2ũ~x!#1M ~x!@v~x!2ṽ~x!#, ;T,M ,
(32)

where

ũ[E
21

1

~A
0

T"U2AT"s!xdy and ṽ[E
21

1

~B
0

"U2B"s!xdy.

(33)

We call the displacement-rotation pair (ũ,ṽ) the generalized dis-
placement. An essential property—Property 10 in@4#—of these
quantities is that

ũ5u and ṽ5v. (34)

To prove this, first note that~14! and ~17! imply that

E
21

1

$1,y%A
0

~y!dy5$1,0%, E
21

1

$1,y%B
0

~y!dy5$0,2 i%,

(35)

where 1 is the two-dimensional identity tensor andi is a unit
vector along thex-axis. Thus, by direct calculation,~33! implies
that

ũSV5u and ṽSV5v. (36)

~This is Property 6 in@4#.! Now set

U5USV1UR and s5sSV1sR, (37)

where the superscript ‘‘R’’ stands for ‘‘residual.’’ Then, by~32!,
~33!, and~37!,

T"ũR~x!1M ~x!ṽR~x!50, ;T,M . (38)

But sR5(UR,sR) is a solution of the equations of plane stre
theory for which the associated generalized stress (TR,MR) is
zero. Hence,ũR and ṽR are independentof T andM. Thus,~38!
can be satisfied if and only ifũR and ṽR vanish, so that~36!
implies ~34!. Henceforth, we may drop the tildes~;! over the
displacements and rotation.

5 Boundary Conditions
A major problem in so-called higher-order beam, plate, a

shell theories—a problem that often goes unmentioned—is ho
prescribe proper boundary conditions. Actually, there are
problems, one due to lack of data and one due to too much.
example, in classical~Euler-Bernoulli! beam theory, the boundar
conditions at a built-in end are clear: Whatever the measure o
vertical deflection,w, it and its axial derivative,w8, must vanish.
However, in the Rankine-Timoshenko theory of shear-deforma
beams, the vertical deflectionw and the rotationb are independen
kinematic variables and ‘‘built-in’’ has at least two physical inte
Journal of Applied Mechanics
lane

ss
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to
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pretations, depending on whetherw5b50 or w5w850 at a
wall. ~See Section H in Chapter IV of@6# where these and othe
possibilities are discussed.!

For our rectangular, anisotropic strip, it seems reasonable
simplestto define built-in at x50 to mean

u~0!50, v~0!50. (39)

If the right end of the beam is subject to the generalized str
(T% ,M% ), then, by (15)3 and~25!, these conditions induce theSaint-
Venantdisplacement boundary conditions

USV~0,y!5A~y!"T% 1B~y!~M% 1 lQ% !. (40)

These boundary conditions in plane stress theory are specia
cause they produceno edge effect at the left end. Likewise, b
~17!, there will be no edge effect at the right end of the bea
providing the prescribed stresses of plane stress theory are g
by

sSV~ l ,y!5A
0

~y!"T% 2~3/2!yiM% . (41)

Beam Boundary Conditions Induced by More General
Plane Stress Boundary Conditions. To illustrate what happens
if the boundary conditions atx50 ~and, by analogy, atx5 l ! are
more general than~40!, let us consider four cases: For simplicit
the boundary conditions the right end of the beam will be taken
be of the form~41! so that there will be no end effects there.

(A) Stresses Prescribed:

s~0,y!5ŝ~y!. (42)

(B) Axial Stress and Vertical Displacement Prescribed:

s~0,y!5ŝ~y!, V~0,y!5V̂~y!. (43)

(C) Shear Stress and Axial Displacement Prescribed:

t~0,y!5 t̂~y!, U~0,y!5Û~y!. (44)

(D) Displacements Prescribed:

U~0,y!5Û~y!. (45)

In case~A!, the boundary conditions for the exact beam theo
follow immediately from~14! as

T̂5T% 5E
21

1

ŝ~y!dy, M̂5M% 1 lQ% 52E
21

1

yŝ~y!dy. (46)

To determine the associated beam boundary conditions in c
~B!–~D!, we introduce the technique first proposed by Ladeve`ze
@5# and later developed by Gregory and Wan@7#. To this end, in
the notation of~30!, we take the Betti-Rayleigh Principle in th
form

@s2sSV,sC#05@s2sSV,sC#x , xP@0,l #, (47)

where s is the ~unknown but unique! solution of a plane stress
problem,sSV is the associated~unique but unknown! Saint-Venant
solution, andsC is one of a certain set ofcanonicalsolutions of
plane stress problems, each of which is chosen so that the left
of ~47! becomes known, depending on which of the cases~B!–~D!
we are considering.~This set of six canonical problems, that ser
as sorts of Green’s functions, may be computed once for all ei
by finite element methods or by the analytical-numerical proj
tion method of Gregory and Gladwell@8#.! Moreover, Saint-
Venant’s Principle for an anisotropic strip guarantees, modul
rigid-body displacement~that we suppress!, that s2sSV ap-
proaches zero as we move into the beam from the left end.~See
@9# and@10# for a proof and numerical values of the rate of dec
for a range of values of the dimensionless elastic consta
NOVEMBER 2001, Vol. 68 Õ 867
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Cablm .! Thus, if x is sufficiently large,1 ~47! takes the more ex-
plicit form

E
21

1

@~s2sSV!"UC2sC"~U2USV!#x50dy50. (48)

Finally, we take

uC~0!5vC~0!5vC~0!50, (49)

since these values of the generalized displacement associated
the canonical solutions represent merely rigid-body displa
ments.

In case ~B!, T̂5T% 5*21
1 ŝ(y)dy and M̂5M% 1 lQ%

52*21
1 yŝ(y)dy are known, whereast(0,y) andU(x,0) are not,

so we definesC to be that solution of the equations of plane stre
satisfying~4!, the homogeneous face traction conditions, plus
end conditions

VC~0,y!5sC~0,y!50, sC~ l ,y!5@A
0

12~y!,A
0

22#
T. (50)

~This second condition implies thatQ̂C5Q% C51.! Thus, ~48! re-
duces to

E
21

1

@~ ŝ2sSV!UC2tC~V̂2VSV!#x50dy50. (51)

But, by ~14!2, ~17!, ~25!, and~33!,

E
21

1

~tCVSV2sSVUC!x50dy

5v~0!2@ T̂uC~0!1QvC~0!1M̂vC~0!#. (52)

By ~49!, the term in brackets vanishes so that from~51! and~52!,

v~0!5E
21

1

~tCV̂2ŝUC!x50dy. (53)

In case ~C! Q̂5Q% 5*21
1 t̂(y)dy is known, but V(0,y) and

s(0,y) are not, so we need two canonical solutions,su
C andsv

C . In
both subcases, the boundary conditions at the left end of the b
are identical:

UC~0,y!5tC~0,y!50. (54)

Thus,~48! reduces to

E
21

1

@~ t̂2tSV!VC2sC~Û2USV!#x50dy50. (55)

Again, by ~14!, ~17!, ~25!, ~33!, and~49!, this expression reduce
to

TCu~0!1MC~0!v~0!5E
21

1

~sCÛ2 t̂VC!x50dy. (55)

As QC50, the two canonical subcases then correspond to ta
$TC,MC%5$1,0% and $0,1%, respectively. That is, the left-en
boundary conditions~54! are to be supplemented by the two se
of right-end boundary conditions

su,v
C ~ l ,y!5A

0

~y!"H F12G ,F00G J 2~3/2!yi$0,1%. (56)

Thus, in addition to the known vertical forceQ̂ at the left end, the
remaining two boundary conditions at the left end of the beam

1This is the only place we requirel the dimensionless length of the beam, to b
sufficiently large. However, this is no way affects the exactness of our beam
~15! and ~28!; it merely provides a device for determining boundary conditions
the beam equations.
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$u~0!,v~0!%5E
21

1

~su,v
C Û2 t̂CVu,v

C !x50dy. (57)

In case~D!, s(0,y) andt(0,y) are unknown so we must take

UC~0,y!50. (58)

Then ~48! reduces to

E
21

1

@sC"~Û2USV!#x50dy50. (59)

By ~25!, ~33!, and~49!,

E
21

1

~sC"Û!x50dy5TC"u~0!1MC~0!v~0!. (60)

Here we see that we need three canonical solutions,su
C , sv

C , and
sv

C , each subject to the same boundary conditions~58! at the left
end of the beam and, by~41!, to the following three sets of stres
boundary conditions at the right end:

su,v,v
C ~ l ,y!5A

0

~y!"H F10G ,F01G ,F00G J 2~3/2!yi$0,2 l ,1%. (61)

Thus,

$u~0!,v~0!,v~0!%5E
21

1

~su,v,v
C "Û!x50dy. (62)

6 Conclusions
We have derived an exact, one-dimensional theory of bea

from the linear, two-dimensional theory of plane stress for
elastically anisotropic rectangular strip. Our final equations,~15!
and ~28!, resemble those of the Rankine-Timoshenko theory
shear-deformable beams, but, unlike the latter, involve no
proximations whatsoever beyond those of plane stress theor
self. In contrast to the general development of exact beam the
in @1–4#, all the results herein are explicit and assume no spe
elastic symmetries~beyond those implies by the existence of
strain-energy density!. Further, using ideas first presented b
Ladevèze @5#, we have worked out the boundary conditions f
our exact beam theory implied by imposing various combinatio
of end tractions and displacements in plane stress theory. Im
menting these boundary conditions requires that we solve, o
once, six canonical plane stress problems.

As in @3# and @4#, we can extend our analysis to beams
piecewise constant width subject to arbitrary body forces and f
tractions. Furthermore, it is not difficult to develop an exact the
for beams in which the anisotropic elastic coefficients vary w
depth. We leave this as a future project.
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Higher-Order Zig-Zag Theory for
Laminated Composites With
Multiple Delaminations
A higher-order zig-zag theory has been developed for laminated composite plates
multiple delaminations. By imposing top and bottom surface transverse shear stres
conditions and interface continuity conditions of transverse shear stresses inclu
delaminated interfaces, the displacement field with minimal degree-of-freedoms ar
tained. This displacement field can systematically handle the number, shape, siz
locations of delaminations. Through the dynamic version of variational approach,
dynamic equilibrium equations and variationally consistent boundary conditions are
tained. The delaminated beam finite element is implemented to evaluate the perfor
of the newly developed theory. Linear buckling and natural frequency analysis de
strate the accuracy and efficiency of the present theory. The present higher-order z
theory should work as an efficient tool to analyze the static and dynamic behavior o
composite plates with multiple delaminations.@DOI: 10.1115/1.1406959#
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1 Introduction

As the increase in the application of composite materials to
primary loading structures, the refined strength evaluations
stress predictions are required. For the enhanced analysis of
nated composite plates, three types of higher-order theory h
been developed. They are smeared theory~@1#!, layerwise theory
~@2#!, and simplified zig-zag theory~@3#!. Extensive reviews up to
date can be found in the review papers of Noor and Burton@4#,
Kapania@5#, and Reddy and Robbins, Jr.@6#. Recently, so-called
‘‘zig-zag’’ theories in the third category have been paid some
tentions because of their accuracy and efficiency in the ply-le
analysis. Most of the theories assume that interfaces are perf
bonded. However, in many applications, this assumption is
adequate for the prediction of the behaviors of composite la
nates. Low-speed impacts by foreign objects or imperfection
the manufacturing process may generate multiple delamination
composite laminates. Compressive strength and stiffness of c
posite structures with delaminations decrease significantly. Th
fore, delamination buckling problem has received considera
attentions. Extensive reviews for delaminated buckling issue
be found in the review paper of Simitses@7#.

Vibration problems of delamnated beam/plate were analyzed
numerous researchers. Classical beam model~@8,9#!, first-order
shear deformation model~@10,11#!, and higher-order shear mode
~@11#! with piezolayers~@12,13#! are employed for the natural fre
quency analysis. Damage detection/health monitoring probl
are also considered in the frameworks of vibration analysis~@14#!.

For the analysis of laminated plates with arbitrary shaped m
tiple delaminations, finite element method is a suitable choice
treat the general loading, boundary conditions, layups, and ge
etry. Even though finite element based on layerwise plate the
~@15#! can provide an adequate framework for the delaminat
analysis, this theory is not computationally efficient since
number of degrees-of-freedom of this theory depend upon

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
1999; final revision, Oct. 19, 2000. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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number of layers. Thus to reduce the active degrees-of-freedo
the problem, a global-local approach has been proposed by
et al. @16–18#.

In the recent study, zig-zag higher order theories have b
extended to the weakened interface problem~@19,20#!. But the
zig-zag theory describing opening as well as slipping behavio
the delaminated parts are rare. Chattopdhyay and Gu@21# devel-
oped higher-order theory to analyze the delamination buck
problem. However, this theory is complicated and employs m
primary variables. In the present study, an efficient higher-or
zig-zag theory with minimal degrees-of-freedom is developed
analyze multiple delamination problems. Linear buckling a
natural frequency problems are analyzed to assess the pe
mance of the proposed zig-zag higher-order theory.

2 Displacement Model
Composite plates with multiple delaminations are consider

including an linearly elastic behavior for laminates. A schema
of laminated composite plate with multiple delaminations
shown in Fig. 1. The form of the displacement field of the p
fectly bonded layers is determined by the requirements that
transverse shear stresses should vanish on the upper and
surface of the plates, and should be continuous through the th
ness of the plates, including the interface between the lam
These conditions can be satisfied by superimposing a linear
zag displacement, with a different slope in each layer, on an o
all cubic varying field. We neglect transverse normal strain, thuw
is only function of the in-plane coordinates. To model the multip
delaminations, the assumed displacement field is suppleme
with unit step-functions which allow discontinuities in the di
placement field.

We start with the following displacement field for a laminate
plate with multiple delaminations:

ua~xa ,z;t !5ua
0~xa ;t !1ca~xa ;t !z1ja~xa ;t !z21fa~xa ;t !z3

1(
k51

N21

Sa
k ~xa ;t !~z2zk!H~z2zk!

1(
k51

N21

ūa
k ~xa ;t !H~z2zk! (1)

u3~xa ,z;t !5w~xa ;t !1(
k51

N21

w̄k~xa ;t !H~z2zk! (2)

2,
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whereua
0, w denote the displacement of a point (xa) on the ref-

erence plane,ca are the rotations of the normals to the referen
plane about thexa-axis, N is the number of layers, andH(z
2zk) is the Heaviside unit step-function. The termsūa

k , w̄k rep-
resent possible jumps in the slipping and opening displaceme
thus permitting incorporation of delamination for multilayere
plates.

Here, we assume initially all the interfaces between the lay
are delaminated. Then the number of delaminated layer interf
are equal to the number of the whole interfaces. The perfe
bonded interfaces can be easily simulated by settingūa

k , w̄k to be
zero.

Traction shear-free boundary conditions for the upper and lo
surfaces of the plates requires thatsa3uz50,h50. For orthotropic
layer, the shear stressessa3 depend only on the transverse she
strains, so the traction-free condition can be written

ga3uz505ca1w,a50 (3)

ga3uz5h5ca1w,a12jah13fah21(
k51

N21

~Sa
k 1w̄,a

k !50 (4)

which are satisfied by

ca52w,a (5)

ja52H 3h

2
fa1

1

2h (
k51

N21

~Sa
k 1w̄,a

k !J (6)

where ( ),a denotes a partial derivative with respect to t
xa-coordinate.

From the above Eqs.~5! and~6!, the transverse shear strains a
obtained as follows:

Fig. 1 Geometry of laminated composite with multiple delami-
nations

Fig. 2 Laminate deformed configurations with multiple
delaminations
870 Õ Vol. 68, NOVEMBER 2001
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ga353~z22hz!fa1(
k51

N21

~Sa
k 1w̄,a

k !H 2
z

h
1H~z2zk!J . (7)

At the perfectly bonded interfaces, transverse stresses are con
ous. At the delaminated interfaces, transverse stresses are ze
the present theory, at the delaminated interfaces, transverse
stress continuity conditions are assumed to be satisfied bec
zero shear stresses also satisfy continuity of stresses. Thus i
ery interface, transverse shear stress continuity conditions are
posed. Continuity of transverse shear stresses between layer
termines the change of slopeSa

k at each interface.

Sa
k 5aag

k fg2w̄,a
k (8)

in which the coefficientaag
k represent the change in slope at ea

interface and depend only on the material properties of each la
The termw̄,a

k represent the change in slope at each delamina
interface. The deformed configuration and the kinematic variab
are shown in Fig. 2.

Finally, substitution of Eqs.~5!, ~6!, and~8! into Eqs.~1! yields

ua5Ua
~0!1Ua

~1!z1Ua
~2!z21Ua

~3!z31(
k51

N21

Ua
k ~z2zk!H~z2zk!

1(
k51

N21

Ūa
k H~z2zk!

(9)

u35w1(
k51

N21

w̄kH~z2zk!

where

Ua
~0!5ua

0, Ua
~1!52w,a , Ua

~2!52
3h

2
fa2

z2

2h (
k51

N21

aag
k fg ,

(10)

Ua
~3!5fa , Ua

k 5aag
k fg2w̄,a

k , Ūa
k 5ūa

k

in which if we neglect the termsūa
k andw̄k, the displacement field

is the same as that chosen by Cho and Parmerter@22,23#.
The strain tensor components associated with the sm

displacement theory of elasticity are given by

eab5eab
~0!1zeab

~1!1z2eab
~2!1z3eab

~3!

1(
k51

N21

$eab
k ~z2zk!1 ēab

k %H~z2zk! (11)

ga35zga3
~1!1z2ga3

~2!1(
k51

N21

gab
k H~z2zk! (12)

where

eab
~0!5

1

2
~ua,b

0 1ub,a
0 !, eab

~1!52
1

2
~w,ab1w,ba!,

eab
~2!52

3h

4
~fa,b1fb,a!2

1

4h (
k51

N21

~aag
k fg,b1abv

k fv,a!,

eab
~3!5

1

2
~fa,b1fb,a!,

(13)

eab
k 5

1

2
~aag

k fgb1abv
k fv,a22w̄,ab

k !, ēab
k 5

1

2
~ ūa,b

k 1ūb,a
k !,

ga3
~1!52S 3hfa1

1

h (
k51

N21

aag
k fgD , ga3

~2!53fa , ga3
k 5aag

k fg .
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3 Equation of Motion and Boundary Conditions
The equations of motion and the variationally consistent bou

ary conditions are formulated in a weak form via the Hamilto
principle,

E
0

tH E
V
~sabdeab1sa3dga3!dV2E

V
r~ u̇adu̇a1u̇3du̇3!dV

2E
V

Nab
0 u3,adu3,bdV2E

V
qdu3dVJ dt50, (14)

where a dot over quantity refers to a derivative with respec
time t, r is the mass density,Nab

0 are the constant in-plane edg
loads, andq is a specified distributed transverse load. In Eqs.~14!,
V is the volume of the plate andV is the reference plane of th
plate.

The equations of motion of the present theory can be derived
integrating the derivatives of the varied quantities by parts
collecting the coefficients ofdua

0, dw, dfa , dūa
i , anddw̄i ,

dua
0:Nab,b5N̈a

dw:Mab,ab1Nab
0 w,ab1Nab

0i w̄,ab
i 1q5M̈a,a1V̈

dfa :R̂ab,b1V̂a5 R̈̂a (15)

dūa
i :N̄ab,b

i 5NJ a
i

dw̄i :M̄ab,ab
i 1qi1Nab

0i w,ab1Nab
0i j w̄,ab

j 5MJ a,a
i 1Q̈i ,

and the associated boundary conditions are specified as

Nabnb50 or dua
050

~Mab,a1Nab
0 w,a1Nab

0i w̄,a
i 2M̈b!nb50 or dw50

Mabnb50 or dw,a50

R̂abnb50 or døa50 (16)

N̄ab
i nb50 or dūa

i 50

~M̄ab,a
i 1Nab

0i w,a1Nab
0i j w̄,a

j 2MJ b
i !nb50 or dw̄i50

M̄ab
i nb50 or dw̄,a

i 50

whereqi is qH(z2zi), the stress resultants are defined as

R̂ab5Rab
~3!2

3h

2
Rab

~2!1(
i 51

N21

aga
i S M̄gb

i 2
1

2h
Rgb

~2!D
(17)

V̂a53Va
~2!23hVa

~1!1(
i 51

N21

aga
i S Qg

i 2
1

h
Vg

~1!D
Journal of Applied Mechanics
nd-
’s

to
e

by
nd

@Nab ,Mab ,Rab
~2! ,Rab

~3!#5E
0

h

sab@1,z,z2,z3#dz

@N̄ab
i ,M̄ab

i #5E
0

h

sab@1,~z2zi !#H~z2zi !dz (18)

@Va
~1! ,Va

~2! ,Qa
i #5E

0

h

sa3@z,z2,H~z2zi !#dz

and the inertia terms are defined as

R̈̂a5R̈a
~3!2

3h

2
R̈a

~2!1(
i 51

N21

aga
i S MJ g

i 2
1

2h
R̈g

~2!D (19)

@N̈a ,M̈a ,R̈a
~2! ,R̈a

~3!#5E
0

h

rüa@1,z,z2,z3#dz

@NJ a
i ,MJ a

i #5E
0

h

rüa@1,~z2zi !#H~z2zi !dz (20)

@V̈,Q̈i #5E
0

h

rü3@1,H~z2zi !#dz.

In Eq. ~15!, as defined by Lee et al.@15#, Nab
0 , Nab

0i , Nab
0i j are the

constant in-plane edge loads defined, respectively, by the foll
ing:

Nab
0 52lnab, Nab

0i 52lnab
i , Nab

0i j 52lnab
i j , (21)

wherel is a buckling parameter,nab is the specified value of the
compressive or shear in-plane force, andnab

i andnab
i j are given as

nab
i 5

(k51
N *zk

zk11H~z2zi !dz

(k51
N *zk

zk11dz
nab (22)

nab
i j 5

(k51
N *zk

zk11H~z2zi !H~z2zj !dz

(k51
N *zk

zk11dz
nab . (23)

4 Constitutive Equations and Inertia Coefficients
The constitutive equations of thekth orthotropic lamina in the

laminate coordinate system are given by

sab
~k!5Q̄abgv

~k! egv
~k! , sa3

~k!5Q̄a3b3
~k! gb3

~k! (24)

where Q̄abgv
(k) is the transformed reduced stiffness of thekth

lamina.
Using the definition of the strain tensor Eqs.~11! and ~12!,

substitution of Eqs.~24! into Eqs. ~18! yields the constitutive
equations of the laminate:
5
Nab

Mab

Rab
~2!

Rab
~3!

M̄ab
i

N̄ab
i

6 53
Aabgv

~0! Aabgv
~1! Aabgv

~2! Aabgv
~3! Babgv

j ~0! Eabgv
j ~0!

Aabgv
~1! Aabgv

~2! Aabgv
~3! Aabgv

~4! Babgv
j ~1! Eabgv

j ~1!

Aabgv
~2! Aabgv

~3! Aabgv
~4! Aabgv

~5! Babgv
j ~2! Eabgv

j ~2!

Aabgv
~3! Aabgv

~4! Aabgv
~5! Aabgv

~6! Babgv
j ~3! Eabgv

j ~3!

Babgv
i ~0! Babgv

i ~1! Babgv
i ~2! Babgv

i ~3! Dabgv
i j Fabgv

i j

Eabgv
i ~0! Eabgv

i ~1! Eabgv
i ~2! Eabgv

i ~3! Fabgv
i j Eabgv

i j

4 5
egv

~0!

egv
~1!

egv
~2!

egv
~3!

egv
j

ēgv
j

6 (25)

H Va
~1!

Va
~2!

Qa
i
J 5F Aa3b3

~2! Aa3b3
~3! Ea3b3

j ~1!

Aa3b3
~3! Aa3b3

~4! Ea3b3
j ~2!

Ea3b3
i ~1! Ea3b3

i ~2! Ea3b3
i j

G H gb3
~1!

gb3
~2!

gb3
j
J (26)
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Aabgv
~m! 5(

k51

N E
zk

zk11

Q̄abgv
k zmdz, ~m50,1,2,3,4,5,6!

Babgv
j ~m! 5(

k51

N E
zk

zk11

Q̄abgv
k ~z2zj !H~z2zj !z

mdz, ~m50,1,2,3!

Eabgv
j ~m! 5(

k51

N E
zk

zk11

Q̄abgv
k H~z2zj !z

mdz, ~m50,1,2,3!

Eabgv
i j 5(

k51

N E
zk

zk11

Q̄abgv
k H~z2zi !H~z2zj !dz

Fabgv
i j 5(

k51

N E
zk

zk11

Q̄abgv
k ~z2zi !H~z2zi !H~z2zj !dz (27)

Dabgv
i j 5(

k51

N E
zk

zk11

Q̄abgv
k ~z2zi !~z2zj !H~z2zi !H~z2zj !dz

Aa3g3
~m! 5(

k51

N E
zk

zk11

Q̄a3g3
k zmdz, ~m52,3,4!

Ea3g3
j ~m! 5(

k51

N E
zk

zk11

Q̄a3g3
k H~z2zj !z

mdz, ~m51,2!

Ea3g3
i j 5(

k51

N E
zk

zk11

Q̄a3g3
k H~z2zi !H~z2zj !dz

and substitution Eqs.~9! into Eqs.~20! yields the inertia coeffi-
cients as follows:

5
N̈a

M̈a

R̈a
~2!

R̈a
~3!

MJ a
i

NJ a
i

6 53
I 0

~0! I 0
~1! I 0

~2! I 0
~3! I 1

j ~0! I 2
j ~0!

I 0
~1! I 0

~2! I 0
~3! I 0

~4! I 1
j ~1! I 2

j ~1!

I 0
~2! I 0

~3! I 0
~4! I 0

~5! I 1
j ~2! I 2

j ~2!

I 0
~3! I 0

~4! I 0
~5! I 0

~6! I 1
j ~3! I 2

j ~3!

I 1
i ~0! I 1

i ~1! I 1
i ~2! I 1

i ~3! I 3
i j I 4

i j

I 2
i ~0! I 2

i ~1! I 2
i ~2! I 2

i ~3! I 4
i j I 5

i j

4 5
Üa

~0!

Üa
~1!

Üa
~2!

Üa
~3!

Üa
j

UJ a
j

6
(28)

H V̈

Q̈iJ 5F I 0
~0! I 2

j ~0!

I 2
i ~0! I 5

i j G H ẅ
wJ j J (29)

where
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I 0
~m!5(

k51

N E
zk

zk11

rzmdz, ~m50,1,2,3,4,5,6!

I 1
j ~m!5(

k51

N E
zk

zk11

r~z2zj !H~z2zj !z
mdz, ~m50,1,2,3!

I 2
j ~m!5(

k51

N E
zk

zk11

rH~z2zj !z
mdz, ~m50,1,2,3!
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I 3
i j 5(

k51

N E
zk

zk11

r~z2zi !~z2zj !H~z2zi !H~z2zj !dz

I 4
i j 5(

k51

N E
zk

zk11

r~z2zi !H~z2zi !H~z2zj !dz

I 5
i j 5(

k51

N E
zk

zk11

rH~z2zi !H~z2zj !dz.

5 Finite Element Model
To assess the validity of the proposed theory, a finite elemen

developed for one-dimensional problems. The primary displa
ment unknowns are expressed in terms of nodal values and s
functions as follows:

~ua
0,fa ,ūa

i !5 (
m51

n

Nm@~ua
0 !m ,~fa!m ,~ ūa

i !m#

w5 (
m51

n

$Pm~w!m1Hxm~w,x!m1Hym~w,y!m% (31)

w̄j5 (
m51

n

$Pm~w̄j !m1Hxm~w̄,x
j !m1Hym~w̄,y

j !m%

wheren is the number of nodes in a typical finite element.Nm is
a Lagrangian interpolation function andPm , Hxm , Hym are Her-
mite interpolation functions. In this study, we used a two-nod
beam element with one-dimensional linear Lagrangian interp
tion functions forua

0, fa , ūa
i and Hermite interpolation functions

for w, wj .
The finite element model of the linear buckling and natu

vibration problem can be expressed as follows:

~@K #2l@S# !$u%5$0%, and ~@K #2v2@M # !$u%5$0% (32)

where @K #, @S#, and @M # are the stiffness matrix, the geometr
stiffness matrix, and the mass matrix. The parametersl, v, and
$u% denote the buckling load, the natural frequency, and the eig
vector of nodal displacements corresponding to an eigenva
respectively.

The strains are defined from the approximation of kinem
variables

$eab%5@B#b$un%, $ga3%5@B#s$un% (33)
$eab%5$eab

~0! ,eab
~1! ,eab

~2! ,eab
~3! ,eab

j ,ēab
j ,%T

$ga3%5$ga3
~1! ,ga3

~2! ,ga3
j ,%T

(34)
$un%5$ua

0,w,w,a ,fa ,ūa
j ,w̄j ,w̄a

j %T

where @B#b , @B#s , and $un% denote the in-plane strain
displacement matrix, transverse shear strain-displacement ma
and nodal displacements, respectively.

In the beginning of the construction of the displacement field
the present theory, we assumed that the delaminations exi
each interface of laminates, but reduced the presented delam
tions using the following strain-displacement matrix relationsh
for the one-dimensional case
Transactions of the ASME



@B#b5@Bb1 , . . . ,Bbn#, @B#s5@Bs1 , . . . ,Bsn# (35)

in which

Bbi53
Ni ,x 0 0 0 b0cD b0cD b0cD
0 2Pi ,xx 2Hxi,xx 0 b0cD b0cD b0cD
0 0 0 AcNi ,x b0cD b0cD b0cD
0 0 0 Ni ,x b0cD b0cD b0cD
0 0 0 a11

1 Ni ,x b0cD
] ] ] ] ] @Pi ,xx# @Hxi,xx#

0 0 0 a11
N21Ni ,x b0cD

$0%N21 $0%N21 $0%N21 $0%N21 @Ni ,x# @0#N213D @0#N213D

4 (36)

Bsi5F 0 0 0 2AcNi

0 0 0 3Ni

0 0 0 a11
1 Ni @0#21~N21!33D

] ] ] ]

0 0 0 a11
N21Ni

G (37)
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2 S 3h1
1

h (
k51

N21

a11
k D , @Ni ,x#5FNi ,x

�

G
N213D

,

(38)

@Pi ,xx#5F2Pi ,xx

�

G
N213D

,

@Hxi,xx#5F2Hxi,xx

�

G
N213D

. (39)

N is the total number of layers, andD is the total number of
delaminations.$0%m , b0cm , and @0#m3n is the m31 null vector,
the 13m null row vector, andm3n the null matrix, respectively.
Thus, the size of the element stiffness matrix is (413D)3(4
13D), independent of the number of layers, and only depend
upon the number of delaminations.

6 Numerical Examples
To examine the accuracy of the present theory, buckling

vibration eigenvalue problems for laminated composite beam w
multiple delaminations were considered: first, the buckling of
delaminated composite beam and, second, the vibration of
delaminated composite beam. Some of the results of the pre
theory are compared with the exact elasticity solutions when t
are available.

Table 1 Comparison of Nondimensional Buckling Load for
Various Length of Delamination

a/L Simitses Chen
Lee

Symmetric
Anti-

symmetric
Present

Symmetric
Anti-

symmetric

0.1 0.9999 0.9999 0.9999 1.9481 0.9999 1.949
0.2 0.9956 0.9956 0.9956 1.4360 0.9956 1.437
0.3 0.9638 0.9638 0.9639 1.0245 0.9641 1.025
0.4 0.8481 0.8561 0.8562 0.8482 0.8566 0.848
0.5 0.6896 0.6896 0.6898 0.7967 0.6901 0.797
0.6 0.5411 0.5411 0.5413 0.7928 0.5415 0.793
0.7 0.4310 0.4310 0.4311 0.7629 0.4312 0.763
0.8 0.3514 0.3514 0.3515 0.6857 0.3516 0.686
0.9 0.2923 0.2933 0.2934 0.5947 0.2934 0.595
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6.1 Example 1: A Delaminated Composite Beam-Plate
Under Axial Compression. The first example analyzed by th
present theory is the linear buckling problem. First, a specia
orthotropic composite laminate containing one centrally loca
midplane delamination is considered. The results are comp
with those reported by other researchers. The material prope
in crossply beam-plate examples are given as follows:

E11526.253106 psi, E2251.493106 psi,

G1251.043106 psi, n1250.28 (40)

whereE11 is the Young’s modulus in the fiber direction,E22 is the
Young’s modulus in the transverse direction,G12 is the shear
modulus, andn12 is the Poisson’s ratio.

The results of this typical example are reproduced from L
et al.@15#. The thickness-to-span length ratio (L/h) is assumed to
be very small and equal to 400. The numerical results of
nondimensional buckling loads with changing delamination len
from the present theory shows good agreement with those f
Simitses et al.@24#, Chen @25#, and Lee et al.@15#. They are
shown in Table 1.

Second, a simply supported composite beam-plate is con
ered. The elasticity solution for this delamination buckling pro
lem of a beam-plate was proposed by Gu and Chattopadhyay@26#.
The configuration of a simply-supported beam-plate with a sin
delamination is given in Fig. 3. The material used in this exam
is as follows:

EL5253106 psi, ET513106 psi, GLT50.53106 psi
(41)

GTT50.23106 psi, nLT5nTT50.25

Fig. 3 Configuration of a simply supported beam-plate with a
single delamination
NOVEMBER 2001, Vol. 68 Õ 873
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where E, G, and n represent the Young’s modulus, the she
modulus, and the Poisson’s ratio of the material, respectivelL
denotes the fiber direction andT denotes the direction perpendicu
lar to the fiber.

The plate is thick (L/h510) and the delaminated layer is rel
tively thin (h1 /h50.8). Figure 4 presents the critical loads no
malized by the value calculated by the classical laminated the
~CLT!. The results obtained for@05/9010/05# composite laminates
are compared with those of CLT, the elasticity solution, and
layerwise theory. The results of the present theory show g

Fig. 5 Configuration of a clamped beam-plate with centrally
located delaminations

Fig. 6 Normalized buckling load versus delamination length
for †0ÕÕ90Õ90Õ0‡ composite, symmetric mode

Fig. 4 Nondimensionalized buckling load versus delamination
length
874 Õ Vol. 68, NOVEMBER 2001
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correlation with the elasticity solutions in the small-sized delam
nation. However, in the mixed-mode range, that is, in case of
large-sized delaminations, the present theory provides sti
buckling loads compared to those of elasticity and other hig
order theories, especially for thicker cases (S510). This situation
is due to the fact that the deformation of the present theory can
provide a sign change of the shear strains at the delamina
interfaces. This makes the buckling load higher than that of e
ticity and closer to that of the classical plate theory.

Third, a clamped beam-plate containing one centrally loca
delamination is considered~Fig. 5!. In this example, the stacking
sequence of the delaminated composite is@0//90/90/0# symmetric
and@0//90/0/90# antisymmetric layup. Figures 6 and 7 present t
normalized buckling loads for symmetric and antisymmet
buckling mode with symmetric layups. The results of the pres
theory are compared with those of CLT and those of layerw
theory for various length-to-thickness ratio (S5L/h). As can be
seen, the numerical results of the nondimensional buckling lo
with changing delamination length from the present theory sho
good agreements with the results of layerwise theory. Figur
present the normalized buckling loads for various length-
thickness ra-

Fig. 7 Normalized buckling load versus delamination length
for †0ÕÕ90Õ90Õ0‡ composite, antisymmetric mode

Fig. 8 Normalized buckling load versus delamination length
for †0ÕÕ90Õ0Õ90‡ composite
Transactions of the ASME
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tio and delamination size with an antisymmetric layup. In th
case, as the size of the delamination (a/L) increases, the buckling
modes of beam-plate have all the three possible buckling mo
i.e., global symmetric, antisymmetric, and local symmetric mod
Then, the range of antisymmetric modes increase asS decreases.
Even in the antisymmetric layup case, the present theory g

Fig. 9 Normalized buckling load versus delamination length
for †0Õ90Õ90Õ0‡ composite with SÄ20, symmetric mode

Fig. 10 Normalized buckling load versus delamination length
for †0Õ90Õ90Õ0‡ composite with SÄ20, antisymmetric mode

Fig. 11 Configuration of cantilevered †0Õ90‡2s composite beam
with a single delamination
Journal of Applied Mechanics
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comparable results to those of layerwise theory for the buck
loads for various delamination sizes and length-to-thickness
tios.

The next analysis is performed for a beam-plate with vario
delaminations and each ply having the same thickness. The b
ling load has been normalized with respect to the critical buckl
load for the undelaminated composite. The length-to-thickness
tio is assumed to be 20. The nondimensional buckling load o
@0/90/90/0# beam-plate is presented in Figs. 9 and 10 for vario
delaminations and the size of delamination. Figures 9 and
show the normalized buckling loads for the symmetric and a
symmetric buckling modes, respectively. Once more, the res
of the present theory show good agreements with those of la
wise theory.

6.2 Example 2: Free Vibration of Cantilevered Compos-
ite Beam With Multiple Delaminations. The second example
analyzed by the present theory is the free vibration problem. F
there is a cantilever crossply composites beam with embed
delaminations of varying size and at several different locatio
The material properties in this example are given as follows:

E11519.63106 psi, E2251.53106 psi,

G1250.7253106 psi
(42)

n1250.33, r51.382131024 lb.2s2/in.4

wherer is a mass density.
The configuration of this example is shown in Fig. 11. In th

example, the stacking sequence of the delaminated compos
@0/90#2s and the thickness of the individual plies is 0.04 in. T
results of the present theory are compared with those of S

Fig. 12 Configuration of cantilevered †0Õ90Õ90Õ0‡ composite
beam with multiple delaminations

Table 2 Fundamental Frequency for Delamination Along Inter-
face 1

a
in Specimen 1

Experimenta

Specimen 2 Specimen 3
Analytical

Modelb Present

0.0 79.875 79.875 79.750 82.042 81.89
1.0 78.376 79.126 77.001 80.133 81.19
2.0 74.375 75.000 76.751 75.285 76.59
3.0 68.250 66.250 66.375 66.936 67.45
4.0 57.623 57.502 57.501 57.239 57.78

Table 3 Fundamental Frequency for Delamination Along Inter-
face 2

a
in Specimen 1

Experimenta

Specimen 2 Specimen 3
Analytical

Modelb Present

0.0 79.875 79.875 79.750 82.042 81.89
1.0 78.375 78.375 76.626 81.385 81.24
2.0 75.126 75.250 75.001 78.103 76.96
3.0 64.001 70.001 69.876 71.159 68.30
4.0 45.752 49.751 49.502 62.121 57.95
NOVEMBER 2001, Vol. 68 Õ 875
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Fig. 13 Normalized natural frequency versus normalized dis-
tance for †0Õ90Õ90Õ0‡ composite with SÄ400

Fig. 14 Normalized natural frequency versus normalized dis-
tance for †0Õ90Õ90Õ0‡ composite with SÄ50

Fig. 15 Normalized natural frequency versus normalized dis-
tance for †0Õ90Õ90Õ0‡ composite with SÄ10
876 Õ Vol. 68, NOVEMBER 2001
et al. @10# in Tables 2 and 3. Tables 2 and 3 show the effect
delamination size and interface location on the fundamental n
ral frequencies of the beam. As it is shown, the results of
present theory show good agreements with those of experim
and the analytical results by Shen et al.@10#.

Next, a cantilever beam-plate containing three delamination
considered. In this example, the stacking sequence of the del
nated composite is@0//90//90//0# symmetric layup. The configura
tion of a cantilever beam-plate with three delaminations is giv
in Fig. 12. Figures 13, 14, and 15 present the normalized nat
frequencies with respect to the first natural frequency of the c
sical lamination theory for perfectly bonded composites.
shown, the present theory gives comparable results with the
erwise theory for the natural frequencies for various delamina
sizes and length-to-thickness ratios. However, in the case of
thick plate (S510), as shown in Fig. 15, the third natural fre
quency predicted by the present theory is higher than those o
layerwise theory. This is due to the displacement field of
present theory which cannot allow the sign change of the sh
angle at the delamination interfaces.

7 Conclusions
A higher-order zig-zag theory has been developed to study

laminated composite plates with multiple delaminations. T
present theory can provide accurate predictions of buckling lo
and natural frequencies for various types of delaminations in
moderate thick plate range. The present theory determines
number of degrees-of-freedom of an undelaminated zone inde
dently of both the number of layers and the number of delami
tions. In the delaminated zone, the minimal number of degre
of-freedom are still retained. Thus this theory can be applied
the problems with many layers and multiple delaminations. Ho
ever, the present theory has its own drawbacks. In the case
thick plate with large-sized delaminations, the prediction of bu
ling loads is overestimated compared to the elasticity solutions
this case, the mixed buckling mode is dominant and it requ
opposite signs of transverse shear strains of delaminated u
and lower parts. However, the present displacement field prov
stiffer solutions than those of elasticity since the displacem
field of the present theory does not allow sign changes of
transverse shear strain at the delamination interfaces.
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Effect of Transverse Moduli on
Through-Thickness Hygrothermal
Expansion Coefficients of
Composite Laminates
In practical analysis, under a plane stress condition, a unidirectional lamina can
assumed with E25E3 from geometrical symmetry consideration. However, from an a
demic point of view, it is interesting to study the case of a lamina with E2ÞE3 . In this
paper the preliminary results of the physical phenomenon about the effect of diff
transverse moduli E2 and E3 on the through-thickness thermal expansion coefficientsaz
of quasi-isotropic composite laminates is presented.@DOI: 10.1115/1.1410937#
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Introduction
Composites for airframe structures must be designed to w

stand the great diversity of terrestrial environments encountere
a variety of operations. A typical environmental effect is the h
wet condition in which the elasticity and strength design allo
ables of the composite may reduce as much as 10 percent t
percent~50 percent reduction occur in some wet layup materia!.
In the terrestrial environment the combined effects of tempera
and humidity must be considered when assessing long-term s
tural integrity ~@1#!.

In some points of view, composite materials can be conside
as a structure~@2#!. Since a number of laminae consist of th
fibrous composite laminate, the mechanical behavior of the la
nate is dependent on the lamina material properties and stac
sequences as well as lamina hygrothermal effects.

In a quasi-isotropic laminate the extensional stiffness matrix@A#
is isotropic, but, in general, the other coupling and bending s
ness matrices@B# and@D#, respectively, may not have an isotrop
form ~@3–5#!. Both three-ply@260 deg/0 deg/ 60 deg# layup and
four-ply @245 deg/0 deg/45 deg/90 deg# layup have only isotropic
extensional stiffness matrix@A#, and the other stiffness matrice
@B# and @D# do not have isotropic form~@3–5#!.

According to Wu and Avery@6# the isotropic laminates can b
obtained from certain ply orientations and sequences with at l
36 plies. Yeh et al.~@7,8#! indicated that a fairly isotropic laminat
is reached if the number of arbitrary orientation plies in the lam
nate is 40 or more. In a recent paper, Yeh@9# presented that a
quasi-isotropic and quasi-homogeneous laminate can be obta
from a dimensionless mathematical model with 40 or more p
of arbitrary orientation. In other words, this dimensionless ma
ematical model of an isotropic laminate has the isotropic stiffn
matrix @A#, the null coupling stiffness matrix@B#, and the isotropic
bending stiffness matrix@D#. Ishikawa and Chou@10# used three
physical models to examine the in-plane thermal expansion c
ficients and thermal bending coefficients of fabric composit
Miller @11# indicated that the thermal expansion coefficients
laminates can be obtained from invariant lamina properties.
et al. @12# reported that the mean values of the through-thickn

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
3, 2001; final revision, June 23, 2001. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
878 Õ Vol. 68, NOVEMBER 2001 Copyright ©
ith-
d in
t/

w-
o 20
s
ure
ruc-

red
e
mi-
king

iff-
c

s

ast

i-

ined
ies
th-
ss

ef-
es.
or
eh
ss

coefficients of hygrothermal expansion in a laminate with 40 r
dom plies or more are close to those values obtained from
analytical formulation.

In this paper, the preliminary results of the physical pheno
enon about the effect of different transverse moduliE2 andE3 on
the through-thickness thermal expansion coefficientsaz of quasi-
isotropic composite laminates is presented. A dimensionless m
ematical model has been used to study the influence of the var
transverse elastic moduliE2 and E3 of lamina on the through-
thickness thermal expansion coefficients of the laminate.

Results and Discussions
Both three-ply @260 deg/0 deg/60 deg# layup and four-ply

@245 deg/0 deg/45 deg/90 deg# layup have only isotropic exten
sional stiffness matrix@A#, and the other stiffness matrices@B# and
@D# do not have isotropic form~@3–5#!.

Although the model of Fukunaga has the isotropic extensio
stiffness matrix@A#, the null coupling stiffness matrix@B#, and the
isotropic bending stiffness matrix@D#, the model of Fukunaga is
obtained from certain ply orientations and sequences with at l
36 or more plies. Therefore, the models of Fukunaga can o
evaluate the values of the through-thickness thermal expan
coefficients for the real composite materials with spec
orientations.

Since the dimensionless mathematical model is obtained fro
simple random statistical approach, in the mathematical poin
view, it is more generalized in doing the analysis of physical p
nomenon and evaluation of mechanical behavior about real c
posite materials with general ply orientations. Therefore, the
mensionless mathematical model has the advantages of not
doing the complete investigation of physical phenomenon and
chanical behavior about general types of real composite mate
but also evaluating the values of the physical parameter~i.e., the
through-thickness thermal expansion coefficients! for the specific
types of real composite materials.

Intuitively, if ply orientations are random, it would expect a
isotropic laminate. Therefore, an analytical formulation for t
through-thickness coefficient of thermal expansion of an isotro
laminate based on the hygrothermal-elastic lamination theory
be derived. The detailed derivation of this formulation can
found in @12#.

In order to study the physical phenomenon about the effec
different transverse moduliE2 and E3 on the through-thickness
thermal expansion coefficientsaz of the composite laminates
both the case ofE25E3 and the case ofE2ÞE3 are considered
and the dimensionless mathematical model is used.

ry
the
nt of
ill
E

2001 by ASME Transactions of the ASME



h

r

ati-
es
m-
gi-

a-
inf.

of

i-

f
cted

f

e
ct.,

er-

d

y-
os.
The composite laminates made of plies with different transve
moduli will display various characteristics and values of t
through-thickness thermal expansion coefficientsaz . It shows
that in the case ofE35E2 with the fixed values of the rest param
eters~such asG12, n31, a1 , . . . etc.! the values ofaz decrease
along with the increase of the values ofE2 . But, in the case of
E2ÞE3 with the fixed values of the other parameters~such as
G12, n31, a1 , . . . etc.!, the values ofaz increase along with the
increase of the values ofE2 .

Conclusions
The preliminary results of the physical phenomenon about

effect of different transverse moduliE2 and E3 on the through-
thickness thermal expansion coefficientsaz of quasi-isotropic
composite laminates are investigated. The approach of a dim
sionless mathematical model analysis has been used to stud
influence of the various transverse elastic moduliE2 andE3 of a
lamina on the through-thickness thermal expansion coefficient
the laminate. The obtained dimensionless results can be use
cover any type of real composite materials.

In practical analysis, under a plane-stress condition a unidi
tional lamina can be assumed withE25E3 from geometrical sym-
metry consideration. However, from academic point of view, it
interesting to study the case of a lamina withE2ÞE3 . Preliminary
results based on theE2ÞE3 consideration are presented in th
paper and a further investigation and detail discussion about
problem will be presented in another paper.

In the case ofE35E2 , with the fixed values of the rest param
eters~such asG12, n31, a1 , . . . etc.!, the values ofaz decrease
along with the increase of the values ofE2 . But, in the case of
E2ÞE3 , with the fixed values of the other parameters~such as
G12, n31, a1 , . . . etc.!, the values ofaz increase along with the
increase of the values ofE2 .
Journal of Applied Mechanics
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The results from the analysis of this dimensionless mathem
cal model will provide general guidelines for designing the valu
of the through-thickness thermal expansion coefficient of the co
posite laminates to fit various environmental conditions in en
neering applications.
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Robust Adaptive Neural
Estimation of Restoring Forces
in Nonlinear Structures
The availability of methods for on-line estimation and identification of structures is
cial for the monitoring and active control of time-varying nonlinear structural syste
Adaptive estimation approaches that have recently appeared in the literature for on
estimation and identification of hysteretic systems under arbitrary dynamic environm
are in general model based. In these approaches, it is assumed that the unknown res
forces are modeled by nonlinear differential equations (which can represent general
linear characteristics, including hysteretic phenomena). The adaptive methods est
the parameters of the nonlinear differential equations on line. Adaptation of the pa
eters is done by comparing the prediction of the assumed model to the response me
ment, and using the prediction error to change the system parameters. In this paper,
methodology is presented which is not model based. The new approach solves the p
of estimating/identifying the restoring forces without assuming any model of the rest
forces dynamics, and without postulating any structure on the form of the under
nonlinear dynamics. The new approach uses the Volterra/Wiener neural netw
(VWNN) which are capable of learning input/output nonlinear dynamics, in combina
with adaptive filtering and estimation techniques. Simulations and experimental re
from a steel structure and from a reinforced-concrete structure illustrate the power
efficiency of the proposed method.@DOI: 10.1115/1.1408614#
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1 Introduction

1.1 Motivation. Developing robust adaptive strategies f
the control of structures~including real-world civil structures! has
been a topic of recent interest~@1#!. The modeling and identifica
tion of nonlinear hysteretic systems are problems widely enco
tered in the structural dynamics field. Nonlinear hysteretic beh
ior is commonly seen in structures experiencing strong earthqu
excitation, in aerospace structures incorporating joints, and
various micro-mechanics problems. Noteworthy studies of
problem are reported in the works of Caughey@2#, Jennings@3#,
Iwan @4#, Bouc@5#, Iwan and Lutes@6#, Masri @7#, Wen@8#, Masri
and Caughey@9#, Baber and Wen@10#, Spanos@11#, Toussi and
Yao @12#, Andronikou and Bekey@13#, Spencer and Bergman@14#,
Vinogradov and Pivovarov@15#, Iwan and Cifuentes@16#, Jayaku-
mar and Beck@17#, Peng and Iwan@18#, Yar and Hammond
@19,20#, Roberts and Spanos@21#, Masri et al. @22#, Loh and
Chung@23#, Benedettini et al.@24#, Chassiakos et al.@25,26#, Sato
and Qi @27#, and most recently Smyth et al.@28#.

The motivation for exploring adaptive techniques in the cont
of structural control comes from the recognition that since str
tures behave nonlinearly when excited by strong motions,
implementation of conventional fixed controller strategies m
prove to be naive. Often, the governing response properties
exhibit themselves for the first time when subjected to stro
shaking. As a result of this, control strategies should incorpo
flexible adaptive identification schemes which can quickly capt
and emulate the essential response signature of a structural sy
and react accordingly. Of course, another key feature of adap

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May
2000; final revision, June 8, 2001. Associate Editor: J. W. Ju. Discussion on the p
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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techniques is that they can model time-varying behavior, such
structural deterioration which is often observed in civil structu
during the course of strong ground excitation.

Although adaptive identification schemes have been inve
gated with this in mind~@25,26#!, the work was limited to identi-
fying certain classes of nonlinearities. Also the aforemention
approaches impose the assumption that the restoring forces
available for measurement. In this paper, the authors apply
adaptive artificial neural network identification technique, whi
can cope with a much broader family of unknown nonlinear
sponse behaviors and does not assume that the restoring force
available from measurements.

1.2 Scope. With the above discussion in mind, the autho
have developed an efficient identification algorithm for handli
general structural systems incorporating severe nonlinearities
cluding elements with time-varying hysteretic characteristics. S
tion 2 provides some background of adaptive estimation te
niques and formulates the problem so that the proposed ne
estimator can be applied to general structural systems using
acceleration measurements; Section 3 presents an applicatio
the proposed method to a simulated structural model incorpora
hysteretic elements; Section 4 presents experimental identifica
results from two representative systems; and Section 5 discu
and evaluates the performance of the method presented here

2 Problem Formulation and Neural Estimators

2.1 General Problem Formulation. Consider the generic
complex structural system shown in Fig. 1. Assume that the st
ture can be subjected to support excitationsx01,¯ ,x0n0

, force

excitationsf 1 ,¯ , f n1
, and control forcesu1 ,¯ ,un1

. The f ’s and
the u’s are applied directly to nodes on the structure at wh
response sensors are located. In other words, the acceleratio
sponse at locations 1,̄ ,n1 will be available for measurement
The internodal connections often behave nonlinearly, and t

,
aper
nical
ted
2001 by ASME Transactions of the ASME
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restoring force is denoted asr j (t) for the j th restoring element,
j 51,̄ ,ne . The reduced-order equation of motion for each a
tive degree-of-freedom may be written as

miẍi1 (
j 51, . . . ,ne

p i j
r r j5 f i1ui i 51,̄ ,n1 (1)

wherene is the number of interconnections which could be ma
between active degrees-of-freedom 1,¯ ,n1 and support degrees
of-freedom 1,̄ ,n0 . In the case of a completely general structu
shown in Fig. 1,ne5(n01n1)(n01n121)/2. The numbersp i j

r

are defined as follows:

p i j
r 55

11 if the j th restoring element applies a positive

force to the i th degree-of-freedom

0 if the j th restoring element applies no

force to the i th degree-of-freedom

21 if the j th restoring element applies a negativ

force to the i th degree-of-freedom

Typically, from inspection of the topology of a structure, o
may quickly disregard certain interconnections between noda
cations. If, for example, the discrete three-degree-of-freed
model shown in Fig. 2 is considered, then the equation of mo

Fig. 1 General structural system, with discrete response mea-
surement locations. The system can experience force excita-
tion, and multiple support motions.
Journal of Applied Mechanics
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for this system may be written as follows:

m1ẍ11r 12r 22r 35 f 11u1

m2ẍ21r 22r 41r 65 f 21u2 (2)

m3ẍ31r 32r 51r 45 f 31u3 .

In this case, using the notation of Eq.~1!, the p i j
r are defined by

the following matrix~which is of order 336 or n13ne)

p r5F 11 21 21 0 0 0

0 11 0 21 0 11

0 0 11 11 21 0
G . (3)

In general, the internodal~element! relative displacements fo
each elementj, can be written together in a vector form as th
product of a connectivity matrixC and a vector containing the
displacements of the active degrees-of-freedom and the sup
motions:

q5Cx5@~p r !T
]~ps!T#3

x11

x12

]

x1n1

¯

x01

x02

]

x0n0

4 (4)

whereq is the vector of internodal relative displacements, of ord
(ne31), C is of order (ne3(n11n0)), (p r)T is of order (ne

3n1), and (ps)T is of order (ne3n0). For example, for the three
degree-of-freedom problem in Fig. 2 this would be
Fig. 2 Three-degree-of-freedom structural system, with discrete response measure-
ment locations. The system can experience force excitation, and multiple support
motions.
NOVEMBER 2001, Vol. 68 Õ 881
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F q1

q2

q3

q4

q5

q6

G53
1 0 0 u 21 0 0

21 1 0 u 0 0 0

21 0 1 u 0 0 0

0 21 1 u 0 0 0

0 0 21 u 0 0 1

0 1 0 u 0 21 0

4 F
x11

x12

x13

x01

x02

x03

G .

(5)

The objective of any control design is to select the cont
forcesui such that some measures of displacements and veloc
are kept small. In this study, two commonly encountered exc
tion scenarios will be considered:

• Excitation Scenario 1: Multiple independent support m
tions with or without multiple force excitation.

• Excitation Scenario 2: Single support motion with or wit
out multiple force excitation.~Note: this could be all support
moving in unison, or could also be all supports fixed.!

For Scenario 1, which is the most general situation, the qua
ties to be minimized~labeled generically as theyj ’s and ẏ j ’s! will
be the internodal displacements and their velocities, i.e., theqj ’s
and q̇ j ’s. For this case then

yj5Cjx5qj (6)
ẏ j5Cj ẋ5q̇ j

whereCj is just thej th row of C. Notice also thaty is of orderne
in this case.

For Scenario 2, which involves a single support motion exc
tion, one can simplify the previous situation and minimize t
displacements and velocities relative to the~single! support mo-
tion, in other words

yj5xj2x01 (7)
ẏ j5 ẋ j2 ẋ01.

Notice thaty is only of ordern1 in this case. Notice also tha
because the support motions are all the same, anyx0 can be used
to determine the relative motions. For the special case when
supports are fixed~i.e., x0150), Eq. ~7! simplifies to minimizing
the absolute displacements and velocities of the active degree
freedom:

yj5xj (8)
ẏ j5 ẋ j .

As it can be seen from the system equations in Eq.~1!, knowl-
edge of the effect of the restoring forcesr j is essential for the
development of efficient control algorithms. In many realistic si
ations, the restoring forces are not available for measuremen
this case, we need an appropriate estimation/identification a
rithm for estimating these forces. The purpose of this paper i
develop and evaluate such an algorithm.

2.2 Filtered Error. Let us define the filtered erroryf ,i as
follows:

yf ,i5 ẏi1k̄yi (9)

wherek̄ is a positive design constant. It can be shown~@29#! that
the definition~9! has two properties:~i! if yf ,i50 then theyi ,ẏi
converge to zero exponentially; and~ii ! if uyf ,i u<C for some posi-
tive constantC, then yi ,ẏi converge exponentially to the se
$yi(t):uyi(t)u<1/k̄C% and $ ẏi(t):u ẏi(t)u<2C% respectively. In
other words, if the filtered erroryf ,i is small and bounded by a
constantC, thenyi ,ẏi converge to a residual set whose radius
proportional toC and inversely proportional to the design consta
k̄. Thus, instead of designing control algorithms to keepyi ,ẏi
small, they can be designed to keep the filtered erroryf ,i small.
882 Õ Vol. 68, NOVEMBER 2001
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2.2.1 Filtered Error for Excitation Scenario 1.For the most
general case, defined above as Excitation Scenario 1, there w
two kinds of filtered error expressions: one which comes from
relative motion between two active degrees-of-freedom and
second which comes from the relative motion between an ac
degree-of-freedom and a support degree-of-freedom. In gen
differentiatingyf ,i , with respect to time and taking into accou
Eqs.~1!, ~6!, and~9!, results in

ẏ f ,i5 ÿi1k̄ ẏi

5Ci ẍ1k̄Ci ẋ (10)

If Ci only combines active degrees-of-freedom sayx1l andx1k ,
then the derivative of the filtered error becomes

ẏ f ,i5cil ẍ1l1cikẍ1k1k̄~cil ẋ1l1cikẋ1k!

5
cil

ml
~2p l

rr1 f l1ul !1
cik

mk
~2pk

r r1 f k1uk!

1k̄~cil ẋ1l1cikẋ1k!

5
cil

ml
~ul !1

cik

mk
~uk!1x i (11)

wherep l
r andpk

r are, respectively, thel th andkth row of matrix
p r , andx i denotes thecombined effectof restoring forces and the
direct force excitations in Eq.~11!, defined as

x i5
cil

ml
~2p l

rr1 f l !1
cik

mk
~2pk

r r1 f k!1k̄~cil ẋ1l1cikẋ1k!.

(12)

By setting ai,1/ml , and bi,1/mk for notational convenience
Eq. ~11! can be rewritten as follows:

ẏ f ,i5x i1ai~cil ul !1bi~cikuk!. (13)

The termsai , bi , and x i are the unknown terms needed to b
estimated.

If, however,Ci combines an active degree-of-freedom sayx1l
and a support degree-of-freedom sayx0k , then, following the
same procedure as above, the derivative of the filtered e
becomes

ẏ f ,i5cil ẍ1l1cikẍ0k1k̄~cil ẋ1l1cikẋ0k!

5
cil

ml
~2p l

rr1 f l1ul !1cikẍ0k1k̄~cil ẋ1l1cikẋ0k!

5
cil

ml
~ul !1x i (14)

where now

x i5
cil

ml
~2p l

rr1 f l !1cikẍ0k1k̄~cil ẋ1l1cikẋ0k! (15)

and

ẏ f ,i5x i1ai~cil ul !. (16)

2.2.2 Filtered Error for Excitation Scenario 2.The expres-
sion for the filtered error in the case of uniform support motion
simpler than that in the more general Excitation Scenario 1 wh
involved the possibility of multiple support motions. Taking E
~7!, differentiating with respect to time, and following the sam
procedure as before, yields

ẏ f ,i5 ÿi1k̄ ẏi

5~ ẍi2 ẍ01!1k̄~ ẋi2 ẋ01!

5
1

ml
~2p l

rr1 f l1ul !2 ẍ011k̄~ ẋi2 ẋ01!
Transactions of the ASME
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ml
~ul !1x i

5ai~ul !1x i (17)

whereai,1/ml , and

x i5
1

ml
~2p l

rr1 f l !2 ẍ011k̄~ ẋi2 ẋ01!. (18)

2.3 Neural Estimators. The restoring forcesr j may possess
nonlinear hysteretic characteristics. In general, the dynamic
the restoring forces can be described by means of nonlinear
ferential equations of the form

ṙ j5Qj~r ,x1 ,ẋ1 ,u,x0 ,ẋ0! j 51, . . . ,ne (19)

wherer , u, x1 , andx0 are the restoring force vector, control forc
vector, active degree-of-freedom and support motion vectors
spectively, andQj is a nonlinear continuous function, capable
capturing nonlinear hysteretic effects. Many different models
the functionQj have been proposed in the literature. As an e
ample, in Chassiakos et al.@26#, an augmented Bouc-Wen mod
~@30#! was used:

r j5kqj1cq̇j1dqj
32E

0

t

~1/h!@n~b!uq̇ j uur j un21r j2gq̇ j ur j un#dt

(20)

whereqj is the relative displacement of elementj.
In Smyth et al.@28# the parameter clustersk, c, d, ~1/h!nb and

~1/h!ng ~which determine the nonlinear and hysteretic charac
istics of the restoring force! were estimated by an on-line adaptiv
estimation technique. In this paper, however, no particular mo
will be assumed for the functionQj , but rather it will be consid-
ered to be anunknown function, whose effect needs to b
estimated.

Since the restoring forcesr j as well as the functionsQj are
assumed unknown, we need to estimate their effect on the sy
dynamics in Eq.~1!. Instead of estimating each of the restorin
forcesr j we will estimate theircombined effectin Eqs.~11!, ~14!,
or ~17!, i.e., we will estimate the termx i . We do so, since in
many cases it is very difficult, if possible at all, to estimate t
effect of each of the restoring forces and unknown signals,
cause the number of unknowns~restoring forces and unknow
signals! is larger than the number of equations in Eqs.~11!, ~14!,
or ~17!.

The main challenge in designing adaptive algorithms for e
mating the unknown terms in Eq.~13! is the time-varying term
x i , which depends nonlinearly and dynamically on the vect
x1 , ẋ1 , u, x0 , ẋ0 . This unknown nonlinear time-varying termx i
will be estimated using Volterra/Wiener neural networks~VWNN!
and their approximation properties established in Kosmatopo
@31#. The VWNN consists of a linear multi-input multi-outpu
~MIMO ! stable dynamical system connected in cascade wit
linear-in-the-weights neural network, as shown in Fig. 3.

The dynamics of the linear MIMO system are given as follow

j5H~s!z (21)

wherez is the input vector to the VWNN,j is the output of the
linear MIMO system, andH ~s! is a stable transfer function matri
~here,s denotes the Laplace operator!. The linear-in-the-weights
neural network is described as follows:

h5Wtf~j! (22)

whereh is the output of the neural network,W denotes the matrix
of the synaptic weights of the neural network,j is the output of
the linear filter in Eq.~21!, and f is a vector of the nonlinea
activation functions of the neural network. A detailed descript
of linear-in-the-weights neural networks and VWNN’s is given
the Appendices.
Journal of Applied Mechanics
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Assuming that measurements of the accelerations are avai
at the support locations and at the active degrees-of-freedom
VWNN input z is chosen asz5@ ẍ1 u ẍ0#T. Using the approxima-
tion results of Kosmatopoulos@31#, it can be shown that the un
known termx i can be approximated by a VWNN. More precise
if the x i and vectorsẍ1 , u, and ẍ0 are bounded and the dimen
sions of the vectorsj andf are large, then there exists a vectoru i
such that

x i~ t !5u i
tf~j!1n i~ t !. (23)

Vector u i contains the same values as the neural network we
matrix W, where the weights have been concatenated into a si
vector for ease of development. The termn i(t) is the so called
‘‘modeling error,’’ i.e., it is a measure of how closely the repr
sentationu i

tf(j) can approximate the unknown termx i . The
modeling error satisfies the following: the magnitude ofn i is in-
versely proportional to the dimensions of the vectorsj andf. In
other words, the modeling error can be made arbitrarily small
increasing the dimensions of the vectorsj andf.

Equation~23! can be rewritten using the most general form
x i from Eq. ~13! as follows:

ẏ f ,i5u i
tf~j!1n i1ai~cil ul !1bi~cikuk!. (24)

If we now define the variablesfa,i,cil ul , andfb,i,cikuk , we
can rewrite Eq.~24! into the following compact form:

ẏ f ,i5u i
tf i1aifa,i1bifb,i1n i . (25)

Thus, we have transformed the relative motion dynamics into
form of Eq. ~25!, where the filtered error velocities are written a
linear combinations of unknown constant parameters and kn
nonlinear functions plus a modeling error termn i . Recall also,
that thebifb,i term occurs only for some filtered error terms in th
Scenario 1 formulation. This term can be omitted for other cas

Since system accelerations are easily available for direct m
surement, we can assume that velocity and displacement estim
are also available through integration. Equation~25! is in the stan-
dard parameter estimation form, and will be used directly in
estimation procedure. The case where system displacement
measured rather than accelerations, can be treated in a si
manner usingz5@x1 u x0#T as the input vector, and performin
some additional signal processing to obtain an estimation equa
in the form of Eq.~25!.

2.4 Adaptive Law and Its Properties. Although different
parameter estimation algorithms exist that can be used for
estimation ofu i , ai , andbi , we will use a normalized gradien
adaptive law with projection~@29,32–34#!. There are two reason
for this choice:~1! Such an adaptive law keeps the parame
estimates bounded regardless of the boundedness properties
signalsxi , f i , fa,i , fb,i , on the one hand, and~2! it can be
appropriately designed so that the estimate ofai51/ml and bi
51/mk are always positive, on the other. The property of t
adaptive law to keep the estimate ofai51/ml and bi51/mk al-
ways positive is very crucial for the design of active control alg
rithms. The adaptive law is summarized as follows:
Estimation Model:

ẑi5 û i
tf i1âifa,i1b̂ifb,i (26)

Adaptive Laws:

Fig. 3 Block diagram of the Volterra Wiener neural network
„VWNN…
NOVEMBER 2001, Vol. 68 Õ 883
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u̇̂ i55
ge if i if uû i u,M

or if uû i u5M and ~ge if i !
tû i<0

S I 2
û i û i

t

û i
tû i

D ge if i otherwise

(27)

ȧ̂i55
ge ifa,i if da1,âi,da2

or if âi5da2 and ~ge ifa,i !
tâi<0

or if âi5da1 and ~ge ifa,i !
tâi>0

0 otherwise

(28)

ḃ̂i55
ge ifb,i if db1,b̂i,db2

or if b̂i5db2 and ~ge ifb,i !
tb̂i<0

or if b̂i5db1 and ~ge ifb,i !
tb̂i>0

0 otherwise

(29)

Normalized Estimation Error:

e i5~zi2 ẑi !/l
2

l2511f i
tf i1fa,i

2 1fb,i
2 (30)

where ẑi is the estimate ofzi5 ẏ f ,i , and û i , âi , b̂i are the esti-
mates off i , ai , and bi , respectively, andg, M, d are design
positive constants. Parameterg is the adaptive gain;M is a large
positive constant boundingu i such thatuu i u,M; andda1 , da2 ,
db1 , db2 are positive design constants~bounds forai and bi),
such thatda1,ai51/ml,da2 anddb1,bi51/mk,db2 .

The adaptive law in Eqs.~26!–~30! guarantees the following
properties:

1 The estimatesû i , âi , b̂i remain bounded, provided thatda1

,âi(0),da2 , db1,b̂i(0),db2 , anduû i(0)u,M .
2 The normalized estimation errore i converges to a residua

set whose radius is proportional to the magnituden i .
3 Let x̂ i, û if i denote the estimate ofx i . Then the error

ex,x i2x̂ i converges to a residual set whose radius is p
portional to the magnituden i .

4 The errors
ea,aifa,i2âifa,i[~ai2âi!cilul ~31!

eb,bifb,i2b̂ifb,i[~bi2b̂i !cil ul

converge to residual sets whose radii are proportional to the m
nitude n̄ i .

5 Let

ŷf,i,E
0

t

@x̂i~t!1âi~t!fa,i~t!1b̂i~t!fb,i~t!#dt
884 Õ Vol. 68, NOVEMBER 2001
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denote the estimate of the filtered erroryf ,i . Then, the error
e f,yf ,i2 ŷ f ,i converges to a residual set whose radius is prop
tional to the magnituden i .

It should be noted that the linearly parameterized model in
~26! can be filtered on both sides of the equation yieldingz̄ and
f̄ ’s which are filtered versions ofz and thef’s. This was done in
Smyth et al.@28# to remove measurement noise before apply
the adaptive law.

3 Application to a Nonlinear Structure
The proposed approach was tested through simulations on

base-excited three-degree-of-freedom chain-like model as in
4. This basic model can be thought of as a discrete approxima
of a three-story building subjected to ground excitation. The b
acceleration is chosen to be a band-limited random signal.
simulation model contains nonlinear hysteretic elements wh
characteristics are considered unknown. The simulation mod
based on the following system of differential equations~assuming
that no control forces are applied; i.e.,ui50).

Fig. 4 Three-degree-of-freedom base excited structural sys-
tem, with discrete response measurement locations
F ẍ13

ṙ 3

ẍ12

ṙ 2

ẍ11

ṙ 1

G53
~u32r 3!/m3

A3~ ẋ132 ẋ12!1c3~~u32r 3!/m32~u21r 32r 2!/m2!13d3~x132x12!
2~ ẋ132 ẋ12!

2B3uẋ132 ẋ12uur 3un~3!21r 31g3~ ẋ132 ẋ12!ur 3un~3!

~u21r 32r 2!/m2

A2~ ẋ122 ẋ11!1c2~~u21r 32r 2!/m22~u11r 22r 1!/m1!13d2~x122x11!
2~ ẋ122 ẋ11!

2B2uẋ122 ẋ11uur 2un~2!21r 21g2~ ẋ122 ẋ11!ur 2un~2!

~u11r 22r 1!/m1

A1~ ẋ112 ẋ01!1c1~~u11r 22r 1!/m12 ẍ01!13d1~x112x01!
2~ ẋ112 ẋ01!

2B1uẋ112 ẋ01uur 1un~1!21r 11g1~ ẋ112 ẋ01!ur 1un~1!

4 (32)
Transactions of the ASME



a
e
T

a

e
u

T
t
e

u

i
i

1

e

t

u

, as
d in

ns.
ing
rol
use
nd

ical

par-
e

ime
i.e.,
ave

e 1.
ing

3.
are
he
t is
tem

the
se 1
nts.
rder
ave

ap-
es

ing
whereAi , Bi , ci , di , gi , n( i ) are constant parameters that gove
the hysteretic behavior of the restoring forces.

Assuming that acceleration measurements are available, t
simulation experiments were performed:

Case 1 Using a wideband random signal as the base excit
ẍ01(t), the system was simulated for 40 seconds. The neural
mator was also running for the entire 40-second duration.
network weights were allowed to adapt during this period. T
purpose of this experiment is to simulate and test the adapta
method, and obtain the weights of the neural network that w
approximate the unknown system.

Case 2 The same wideband random base excitation as in C
was used, however, now the on-line adaptation is off. The weig
of the neural network are fixed to the values obtained in Cas
The purpose of this simulation is to validate the obtained ne
model.

Case 3 While the neural network is still fixed to the valu
obtained in Case 1, a different base excitation is now used.
simulation further validates the obtained neural model. If
VWNN is indeed a good approximator of the unknown syst
dynamics, then it should perform well even in the case when
system is excited by a completely new random input.

Figure 5 plots the restoring forces~solid curve! and their esti-
mates~dashed curves! produced by the neural estimator for sim
lation Case 1. Similarly Fig. 6 plots the accelerations~solid curve!
and their estimates~dashed curves! produced by the neural est
mator for simulation Case 1. The neural network weights are
tially set to small random values. Although the adaptation is
from time t50, it is seen from the figures that it takes about
seconds~a few response cycles! for the network weights to adap
and to estimate the restoring forces exactly. Figure 7 pres
corresponding phase plane plots. The actual restoring forces~left
subplots! and their estimates~right subplots! are plotted agains
the relative ‘‘interstory’’ displacements for the last 20 seconds
the simulation run, corresponding to Case 1. Only the last
seconds of the simulation are shown for purposes of readab
~the initial transient effects of the adaptation are not plotted he!.

Figure 8 plots the time-history of some representative ne
Journal of Applied Mechanics
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estimator parameters. The VWNN parameters used for training
well as the constants used in the adaptive law are presente
Table 1 whereI k is the identity matrix of dimensionk, k57 is the
dimension of the vectorz. Note also that the value ofk̄50, in
other words the derivative of the ‘‘filtered error’’~which is being
modeled! will simply consist of system response acceleratio
This situation exists for a case where one is soley perform
model identification, and not simultaneously applying cont
forces to keep the filtered error small. This is done simply beca
the emphasis of this paper is on the identification algorithm a
performance. For a simultaneous control application a typ
value of k̄ might be 1.

Figure 9 presents the results from simulation Case 2. Com
ing the time history plots of Fig. 9 with those of Fig. 5, it can b
seen that the neural network tracks the unknown forces from t
t50. This is of course expected, since adaptation is now off,
there are no transient adaptation effects, and the weights h
already converged to their optimal values from simulation Cas

Figure 10 presents plots the of time-histories of the restor
forces compared with their estimates from simulation Case
Now the adaptation is off, and the neural network weights
fixed to their optimal values from simulation Case 1. Although t
base excitation is different than that of simulation Case 1, i
seen that the neural network approximates the unknown sys
dynamics very well.

In Table 2, we present the RMS of the estimation error for
three simulation runs Case 1–3. As expected, simulation Ca
gives a higher RMS error, due to the initial adaptation transie
The RMS errors for simulations Case 2 and Case 3 are one o
of magnitude smaller than those of Case 1, since the weights h
now converged to their optimal values.

The same ‘‘experiment’’ was repeated by increasing the ad
tive gain g from 0.1 to 0.9. Figure 11 plots the restoring forc
~solid curve! and their estimates~dashed curves! produced by the
neural estimator during training and Fig. 12 plots the restor
forces~solid curve! and their estimates~dashed curves! produced
by the neural estimator after training.

The value of the adaptive gain~learning rate! g has a consider-
Fig. 5 Time-history of actual „solid curve … and estimated „dashed curve … restor-
ing forces when adaptation is on
NOVEMBER 2001, Vol. 68 Õ 885
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Fig. 6 Time-history of actual „solid curve … and estimated „dashed curve … accel-
erations when adaptation is on
T

t
t
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tion
y
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tion
the
able effect on the learning properties of the neural estimator.
plots in Figs. 11 and 12 are the same plots as those of simula
~1!, with the exception that the learning rate has now been
creased tog50.9, as opposed tog50.1 for simulation~1!. A
comparison between Figs. 5, 9 and Figs. 11, 12 reveals tha
increase of the adaptive gain has the effect of reducing the
that the neural estimator needs to accurately predict the resto
forces from about 15 to 5 seconds during training. The tradeoff
MBER 2001
he
tion
in-

the
ime
ring
for

such an improvement in the transient behavior is that the ne
estimator for the larger adaptive gain case has poorer estima
capabilities after training is off. It is worth noting that, in man
control applications, fast estimation error convergence during
aptation~training! is more important than good estimation aft
the training phase. In those cases a larger adaptive gain is
gested. It is also noted that, although theoretically the estima
error convergence can be made arbitrarily fast by increasing
Fig. 7 Actual „left subplots … and estimated „right subplots … restoring forces ver-
sus relative displacements when adaptation is on
Transactions of the ASME
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Fig. 8 Time-history of Volterra ÕWiener neural network „VWNN… adjustable param-
eters

Fig. 9 Time-history of actual „solid curve … and estimated „dashed curve … restor-
ing forces after training for the same base acceleration as in Figs. 5–8

Table 1 Neural Network Parameters

k̄ 0

H(s) F L~s!
L~s!Lt~s!G , where L~s!5

@ I ks9, . . . ,I ks,I k#t

~s110!10

Wtf(j) a third-order HONN was used~@36#!
a ~see Appendix B! 10

M 106

da1 , da2 anddb1 , db2 0.1, 1000
g 0.1
ied Mechanics NOVEMBER 2001, Vol. 68 Õ 887
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Fig. 10 Time-history of actual „solid curve … and estimated „dashed curve … restor-
ing forces after training for different base acceleration than that of Figs. 5–8
tive
es

ata
m

Table 2 RMS of Estimation Error

Training Mode RMS error

Case 1: Training On 0.0260
Case 2: Training Off 0.0066
Case 3: Training Off, Diff. Exc. 0.0029
cess-

MBER 2001
adaptive gain, in practice there is an upper bound to the adap
gain, since ifg is too large, then the estimation algorithm becom
numerically unstable.

4 Experimental Results
In this section, identification results using experimental d

from two highly nonlinear hysteretic single-degree-of-freedo
structures are presented. It is shown that our approach is suc
Fig. 11 Time-history of actual „solid curve … and estimated „dashed curve … restor-
ing forces when adaptation is on, gÄ0.9
Transactions of the ASME
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Fig. 12 Time-history of actual „solid curve … and estimated „dashed curve … restor-
ing forces after training for different base acceleration than that of Figs. 11, g
Ä0.9
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fully applied to the unknown nonlinear hysteretic structures. T
data come from a concrete structure and a steel structure. In
cases a VWNN is used whose parameters are summarized in T
3. Since only a limited number of data is available in both cas
the simulation policy was as follows: 50 training iterations we
performed, where at the beginning of each iteration the weig
from the end of the previous iteration were used whereI k is the
identity matrix of dimensionk, k52 is the dimension of the
vectorz.

4.1 Concrete Structure. The concrete specimen was a on
third scale model of a reinforced concrete, multistory frame jo
prototype. Details of the test article and a photograph of the f
ricated specimen and test apparatus are available in the wo
Masri et al.@35#. The concrete specimen was tested by means
servo-hydraulic device which imposed a prescribed dynamic
tion at the specimen boundary.

Figure 13 plots the actual concrete restoring force~solid curve!
and its estimate~dashed curve! versus time~upper subplot! and
versus the displacement~lower subplot! during the first iteration.
Figure 14 plots the actual and estimated restoring forces afte
training is finished~in 15 iterations!. It is seen that the VWNN
approximates very accurately the characteristics of the struc

Table 3 Neural Network Parameters Used for the Concrete and
the Steel Structures

k̄ 0

H(s) F L~s!
L~s!Lt~s!G where L~s!5

@ I ks3, . . . ,I ks,I k#t

~s110!10

Wtf(j) a second-order HONN was used~@36#!
a ~see Appendix B! 10

M 106

da1 , da2 anddb1 , db2 0.1, 1000
g 0.1
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even though the restoring force incorporates features assoc
with highly nonlinear behavior exhibited by hysteretic as well
dead-space type nonlinearities.

4.2 Steel Structure. Experimental tests were also con
ducted by means of a full-scale structural steel subassem
~made of ASTM A36 steel!, consisting of a W16X40 wide flange
beam framing into an 11-inch square box column. Because
behavior of the column wall has an important effect on the ove
behavior of the connection, an axial load was applied to the c
umn to simulate the dead and live load in an actual building c
umn. Hydraulic actuators were used to impose the vertical lo
as well as the induced moment at the connection. The applied
loads and beam displacements were monitored by suitable f
and displacement sensors. Experimental measurements were
processed to extract the value of the applied moment and
corresponding joint rotation, which were subsequently used to
velop the hysteretic characteristics of the connection.

Figures 15 and 16 compare the actual~measured! restoring
force with its estimated values at the first training episode, a
after training is completed. Notice that the plotted nonlinear
storing force clearly exhibits degrading hysteretic properties. N
also that the estimation procedure is capable of accurately tr
ing this time varying nonlinear force.

5 Discussion
As has been discussed throughout this paper, and as can be

from the very control-oriented formulation presented, the prin
pal application for this estimation technique is in the area of ad
tive control of nonlinear time-varying structural systems. Its ide
tification and estimation performance has been demonstrated
rather accurate, even during the first training cycle where na
priori model is assumed. In its present form the approach is so
what computationally heavy for applications requiring estima
to be computed within with very small time step sizes. This
simply because of the large size of the neural network, and p
gressively enhanced speeds of computation will soon alleviate
problem. It is important to note, that through this gradient-ba
NOVEMBER 2001, Vol. 68 Õ 889
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Fig. 13 Concrete structure: restoring forces and their estimates during the first
training iteration
r u-
c-
ch-

for
adaptive scheme, no matrix inversion is required; rather only m
tiplication and addition operations are called for on reasona
large matrices. In addition, it is hoped that, through further
search and experience, better physical insight can be gaine
order to streamline the network complexity required to model c
tain nonlinearities. This in turn would greatly speed up compu
tion and model convergence.
MBER 2001
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6 Conclusions

The availability of estimation/identification techniques is cr
cial for the on-line control and monitoring of time-varying stru
tural systems. The existing adaptive estimation/identification te
niques suffer from two drawbacks: they assume that~1! the
restoring forces applied to the system’s elements are available
Fig. 14 Concrete structure: restoring forces and their estimates after training
Transactions of the ASME
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Fig. 15 Steel structure: restoring forces and their estimates during the first train-
ing iteration
e
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and
measurement and that~2! the differential equation driving thes
restoring forces can be parameterized as a linear combinatio
unknown constant parameters and known nonlinear terms. In
paper, a new methodology is presented which completely o
comes the above two problems. Specifically, a new approac
presented that solves the problem of estimating/identifying
restoring forces without assuming that the restoring forces
available for measurement, or imposing any restrictions on
nature of structure of the restoring forces dynamics. The new
chanics
n of
this
er-

h is
the
are
the
ap-

proach uses appropriately adaptive filtering and estimation te
niques and also makes use of the Volterra/Wiener neural netw
~VWNN! which is capable of learning input/output nonlinear d
namical behaviors.

Simulations performed on a three-story building model un
earthquake excitation, as well as processing of experimental m
surements from a reinforced-concrete structure as well as a
structure, verified the efficiency of the proposed technique
demonstrated its utility.
Fig. 16 Steel structure: restoring forces and their estimates after training
NOVEMBER 2001, Vol. 68 Õ 891
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Appendix A

Linear-in-the-Weights Neural Networks. Neural networks
are known to possess powerful approximation capabilities; wo
by many authors~see@36# and the references therein! have shown
that various neural network models are capable of approxima
either functions or dynamical systems to any desired degre
accuracy. The focus of this paper is on linear-in-the-weights n
ral networks. In general, such neural networks are mathematic
described by

h5Wtf~j! (A1)

wherejPRn denotes the input vector,hPRm denotes the output
WPRm3L denotes the synaptic matrix of the neural network a
f:Rn°RL is a nonlinear vector function ofregressor termswith
the integerL denoting the number of regressor terms. Vario
neural network models belong to the class of Eq.~A1!. For ex-
ample, high-order neural networks, radial basis function netwo
neural network with shifted sigmoidals and adaptive fuzzy s
tems have been shown to belong to the class of neural networ
Eq. ~A1!. For more details on linear-in-the-weights neural n
works the reader is referred to Kosmatopoulos et al.@36#.

For the readers that are not familiar with the linear-in-th
weights neural networks but are familiar with the multilayer ne
ral networks~MNNs!, they should picture a linear-in-the-weigh
neural network as a MNN with one input layer with as ma
neurons as the number of inputs, a hidden layer consisting
many neurons and one output layer with as many neurons a
number of outputs. The activation functions in the input and o
put layers are linear~identity! mappings while the activation func
tions in the hidden layer could be a variety of different nonline
functions such as the product of the inputs, a radial basis func
etc.

An important property that the many neural network models
the form in Eq. (A1) satisfy is that
~P1! Neural networks belonging to the family described in E
(A1) are said to beuniversal approximators, if for every continu-
ous functionh:Rn°Rm,e.0, and compact setx,Rn there is an
integerL and a matrixW* such that the neural network withL
regressor terms satisfies

sup
jPx

uh~j!2W* tf~j!u<e. (A2)

Theoptimal synaptic matrix W* and themodeling errorm w.r.t.
L, f, h, andx are defined as

W*,arg min
W

sup
jPx

uF~j!2W* tf~j!u

and

m~j!,h~j!2W* tf~j!.

It is worth noticing that from property~P1! supjPxm(j) can be
made arbitrarily small by appropriately selectingL. In general,
supjPxm(j) becomes smaller wheneverL increases.

Appendix B

The Volterra ÕWiener Neural Network „VWNN …. The
Volterra/Wiener neural network consists of a linear filter interco
nected in series with a linear-in-the-weights neural network
shown in Fig. 3. The linear filter has more outputs than inputs
it is used as a memory of the past history of the input signals.
two modules of the VWNN, namely, the dynamic linear modu
and the static neural network module are described as follow
892 Õ Vol. 68, NOVEMBER 2001
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The Dynamic Linear Module.Let hi(•),i 51, . . . ,N denote a
set of stable linear transfer functions satisfying the followi
property:
~P2! For any stable transfer functionP(s), positive realvmax
ande.0, there exists a positive integerN and anN-dimensional
real vectora such that

sup
vP@0,vmax#

I P~ j v!2(
i 51

N

a ihi~ j v!I,e.

An example of a family of transfer functionshi(s) that satisfy the
property ~P2! is the Laguerre polynomialshi(s)5A2p(p
2s) i 21/(p1s) i , wherep is a positive design parameter~@31#!.

The dynamics of the dynamic linear module are described
the following set of equations:

j i 1 ,i5hi 1
~s!j i

j i k, . . . ,i 1 ,i5hi k
~s!j i k21, . . . ,i 1 ,i

, i P@1, . . . ,n11ne#, i k , . . . ,i 1

P@1, . . . ,N#, kP$1, . . . ,M %

(B1)

where j,@u1 , . . . ,un1
,y1 , . . . ,yne

#t. Let jN,M be defined as
follows:

jN,M5@j i k, . . . ,i 1 ,i #
t, i P$1, . . . ,n11ne%, i k, . . . ,i 1

P$1, . . . ,N%, kP$1, . . . ,M %. (B2)

Let N̄M denote the dimension of the vectorjN,M .
The vectorjN,M should be thought as a signal carrying info

mation about the past history of the input signal vectorj̄.

The Static Neural Network Module.The static neural network
module consists of a linear-in-the-weights neural network that
isfies property~P1! and is described by the following equation:

h5Wtf~jN,M ! (B3)

wherejN,MPRN̄M denotes the input vector to the neural netwo
F̂PRm denotes the output vector of the neural network,W
PRm3L denotes the synaptic matrix of the neural netwo

f:RN̄M°RL is a nonlinear vector function ofregressor termsand
the integerL denotes the number of regressor terms.
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Plastic Forming Processes
Through Rotating Conical Dies1

Drawing and extrusion of single-phase and multilayered tubes through rotating con
dies is investigated within the framework of continuum plasticity. Large strain perfe
plastic J2 flow theory models constitutive behavior along with a radial-helical flow p
tern. The governing system for a single-layer process is reduced to three coupled n
ear ordinary differential equations. An approximate solution is developed for long
tapered working zones with low wall friction. That solution is used to simulate the
within each layer in composite tube forming. Exact relations are derived for the n-lay
tube and it is shown that wall rotation can considerably reduce the required wor
loads. @DOI: 10.1115/1.1382597#
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1 Introduction

Multilayered composite tubes offer a combination of propert
suitable for a wide range of industrial applications. By comparis
with single phase tubes there are obvious advantages of the
posites in the practice of nuclear and chemical engineering
well as in cryogenic applications and in aerospace enginee
Composite bi-layered cylinders are frequently encountered in
transfer tubes~aluminum on steel! and in electrical wires~copper
on steel!.

Existing studies on drawing and extrusion of composite tu
through conical dies center almost exclusively on the upper bo
estimation of the working load~@1,2#! with stationary dies. Dur-
ban @3# applied the Shield@4# radial flow solution to study ana
lytically drawing and extrusion of composite tubes. His analysis
valid for long and tapered working zones with small wa
friction—has been extended recently by~Alcaraz, Martinez-
Espanola, and Gil-Sevillano@5#! to include large cone angles.

In this work we examine plastic forming processes of comp
ite multilayered tubes through rotating conical dies~in opposing
directions!. That rotation is expected to divert the resisting rad
shear stresses along the walls, thus reducing the required wo
load and hence increasing the efficiency of the process by al
ing higher reductions. Early studies of drawing through rotat
conical dies are by Brovman@6# for perfectly plastic wires, and by
Durban@7# for power-law viscous tubes.

We begin, in the next section, with the formulation of the go
erning field equations for a single-phase tube. Material behavio
modeled by the rigid/perfectly plasticJ2 flow theory and the flow
pattern is assumed to be radially helical. The resulting sys
consists of three coupled nonlinear ordinary differential equati
with the shear stresses transverse profiles as unknowns.

Next, in section 3, we concentrate on the important case of l
and tapered dies with small wall friction. A consistent approxim
tion of the field equations admits, under these assumptions
exact analytical solution for the stresses and velocities. This s

1This work is based in part on a Master of Science thesis submitted to the T
nion by G. Davidi.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 1
2000; final revision, Feb. 20, 2001. Associate Editor M.-J. Pindera. Discussion o
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
894 Õ Vol. 68, NOVEMBER 2001 Copyright ©
es
on
om-
as

ing.
eat

es
und

—
ll

s-

ial
king
ow-
ng

v-
r is

em
ns

ng
a-
, an
lu-

tion is briefly discussed, emphasizing the beneficial effects of w
rotation. Contact is made with the study in~@6#! for the full cyl-
inder with one rotating wall.

The single-layer approximate solution is employed, in Sect
4, to model the behavior of each phase in a composite multi
ered tube. Interfacial continuity requirements along with surfa
boundary data lead to a closed-form solution in terms of avera
composite properties. The expressions for working stresses ar
equal footing with the single layer analysis and reveal again
advantage of wall rotation. The paper concludes with a brief d
cussion of the solution for composite tubes, and a few exam
are given to illustrate the main findings.

2 Single-Phase Formulation
With the notation of Fig. 1 we consider a steady forming pr

cess of combined extrusion/drawing of tubes through rotat
conical dies. The initial dimensions of the tube are reduced
enforcing an irreversible plastic deformation within the conic
working zone. The conical walls of the die have a common ap
O and the flow pattern within the working zone is assumed to
axially symmetric with two velocity components; a radial comp
nentu, induced by the entry/exit loads, and a circumferential v
locity w due to the rotation of the walls. The latter component
transmitted by circumferential friction along the walls.

Thus, with a fixed Eulerian triad (er ,eu ,ef), located at the
virtual apex 0, we have the velocity vector of the working zon

v5uer1wef (2.1)

where both components~u, w! depend onr andu.
Constitutive behavior is modeled by theJ2 flow theory, with

rigid/perfectly plastic response,

S5A2

3
Y

D

AD••D
(2.2)

whereS is the stress deviator,Y—the uniaxial yield stress andD
denotes the Eulerian strain rate tensor. It is now a matter of ea
verify that material incompressibility, implied by~2.2!, dictates
the radial velocity component

u52
f ~u!

r 2 (2.3)

where f (u) is an unknown function ofu and the negative sign
indicates converging conical flow. Furthermore, to have both
locity components on equal footing~and hence all strain rate com
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ponents with an identical algebraic weight of the radial coor
nate! we take a circumferential velocity profile of the form

w5
g~u!

r 2 1V0r sinu (2.4)

whereg(u) is again an unknown function ofu, andV0 denotes a
reference rigid-body rate of rotation. Accordingly, notice that t
second term in~2.4! does not induce any strain rates within th
working zone and, in fact, we may proceed withV050. The
choice ~2.3!–~2.4! generates, by~2.2!, a deviatoric stress field
which is independent ofr, thus facilitating an analytical solution
along the lines of~@4,8,9#!.

The strain rate components that follow from~2.3!–~2.4! are,
with an obvious notation,

« rr 5
2 f

r 3 «uu5«ff52
f

r 3

« ru52
f 8

2r 3 « rf52
3g

2r 3 «uf5
g82g cotu

2r 3 (2.5)

where the prime indicates differentiation with respect tou. A fur-
ther substitution of~2.5! in ~2.2! results in the deviatoric stresse

S rr 2Suu5
1

D
with Suu5Sff

S ru52
b

)D
S rf52

g1

)D
Suf5

g2

)D
(2.6)

where all stress components have been nondimensionalized
respect toY ~i.e., S rr 5s rr /Y, S ru5s ru /Y, etc., s i j being the
true stress components! and

b5
) f 8

6 f
g15
)g

2 f
g25
)~g82gcotu!

6 f
(2.7)

D5A11b21g1
21g2

2. (2.8)

The deviatorics in~2.6! are now independent ofr and contain two
unknown functions~f, g! of u. The relative strength of the thre
shear strain rates is expressed byb and (g1 ,g2).

It remains to consider the equations of equilibrium~inertia ef-
fects are neglected for low-speed processes! given by

S rr ,r1
1

r
S ru,u1

1

r
@2~S rr 2Suu!1S ru cotu#50 (2.9a)

S ru,r1
1

r
Suu,u1

3

r
S ru50 (2.9b)

Fig. 1 Drawing or extrusion of tubes through rotating conical
dies. The working zone is bounded by the radii r inÏrÏr out and
wall angles a1ÏuÏa2 .
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S rf,r1
1

r
Suf,u1

1

r
~3S rf12Suf cotu!50 (2.9c)

wherer5r /r out is the nondimensionalized radial coordinate and
comma followed by an index denotes partial differentiation. No
inserting the deviators (S rr 2Suu) andS ru , from ~2.6!, in ~2.9a!
and integrating overr gives

S rr 5F S b

)D
D 8

1S b

)D
D cotu2

2

DG lnr1G~u! (2.10)

where G(u) is yet another unknown function ofu. Combining
~2.10! with the first of ~2.6! we obtain an expression forSuu
which is substituted in~2.9b! together withS ru from ~2.6!. It
follows that transverse equilibrium is maintained if

F S b

)D
D 8

1S b

)D
D cotu2

2

DG 850 (2.11)

and

G85S 1

D D 8
1
)b

D
. (2.12)

Finally, we substitute the shear stressesS rf andSuf from ~2.6! in
the circumferential equilibrium equation~2.9c!. This gives the
equation

S g2

D D 8
12S g2

D D cotu23S g1

D D50. (2.13)

To sum up, the radial-helical flow pattern~2.3!–~2.4! can be sus-
tained by the perfectly plastic solid~2.2! provided the Eqs.
~2.11!–~2.13! are satisfied. That system of three equations is
three unknown functions~f, g, G! and can be solved along with
appropriate boundary data. In fact, Eq.~2.12! can be treated sepa
rately for functionG, which leaves us with the two Eqs.~2.11!
and ~2.13! for f andg. While no attempt is made in this study t
handle the fully nonlinear system, it is worth mentioning that it
possible to extract a compatibility equation from relations~2.7! in
the form

g181~2)b2cotu!g123g250. (2.14)

Equations~2.11! and~2.13!–~2.14!, along with the algebraic con
nection ~2.8!, may be regarded as a system of fourth order
(b,g1 ,g2) which appears to be simpler than the original form
lation.

A similar analysis for power low viscous solids has been p
sented by Durban@7#, and an earlier version for perfectly plast
solids was given in~@6#!. In the absence of rotation (g[0) we
recover from ~2.11!–~2.12!, with D5A11b2, the radial flow
equations first obtained by Shield@4#.

3 Approximate Solution for Long and Tapered Dies
With Small Wall Friction

Radial flow simulation of extrusion and drawing through con
cal dies is by now well established~Durban @3,9#! for long and
tapered dies with small wall friction. In such configurations it
permissible to neglect the contributions of wall friction and
entry/exit transition zones to plastic yielding within the workin
zone. That analysis is of asymptotic value and is practically va
for long dies with small cone angles. In fact, initial experimen
work, which has accompanied this study, shows that pure ex
sion processes are bounded by the effect of blocking beyond
tain levels of taperness.

Proceeding along similar lines in the present study we cons
now the restricted case where all three shear stre
(s ru ,s rf ,suf) are much smaller than the yield stressY. This
NOVEMBER 2001, Vol. 68 Õ 895
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assumption is usually met in reality since the forming proces
are conducted with well lubricated dies. Thus, in nondimensi
alized notation

S ru
2 ,S rf

2 ,Suf
2 !1 (3.1)

implying, via ~2.6! and ~2.8!, that

b2,g1
2,g2

2!1 and D'1 (3.2)

it follows that the three governing equations,~2.11! and ~2.13!–
~2.14!, simplify to

~b81b cotu!850 (3.3)

g2812g2 cotu23g150 (3.4)

g182g1 cotu23g250. (3.5)

Put differently, the system~3.3!–~3.5! is the consistent first-orde
linearization of the original nonlinear system, as all coupled ter
have been dropped out.

Equation~3.3! admits the exact solution

b52A cotu1
B

sinu
(3.6)

where ~A, B! are integration constants. Likewise, the coup
~3.4!–~3.5! can be integrated exactly in terms of Legendre fun
tions. However, for small cone angles we may use the approxi
tion cotu'u21 and write the solution of~3.4!–~3.5!—with cotu
replaced byu21—in terms of modified Bessel functions. Expan
ing ~3.6! and the Bessel solution for (g1 ,g2) in powers ofu,
results in the consistent small-angle approximation

b52)dS u2
as

2

u D (3.7)

g15
3)

4
M S u

ak
22

1

u D (3.8)

g25
)

2
M S 1

u2D (3.9)

where (d,as ,M ,ak) are integration constants. Constants (d,as)
are of course related to constants~A, B! in ~3.6!. Solutions~3.7!–
~3.9! can also be derived asymptotically from~3.3!–~3.5!, as u
becomes small, by a standard expansion in powers ofu.

Within that framework, the solution of~2.12! is simply

G5D, (3.10)

D being a constant, and the stresses follow from~2.10! and ~2.6!
as

S rr 522~11d!lnr1D Suu5Sff5S rr 21

S ru5dS u2
as

2

u D S rf5
3

4
M S 1

u
2

u

ak
2D Suf5

1

2
M S 1

u2D .

(3.11)

In the expression forS rr we have assumed thatas
2!1, as will be

confirmed later.
To find the radial velocity profile we integrate the first of~2.7!

in the form

f ~u!5U exp~2)*bdu!'U~112)*bdu!'U (3.12)

since bothb andu are assumed to be small. HereU is a constant,
which scales the transversally uniform radial velocity~2.3!. The
circumferential velocity profileg(u) in ~2.4! follows from the
second of~2.7! along with ~3.8! and ~3.12!, viz

g~u!5
3

2
M S u

ak
22

1

u DU. (3.13)
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At this stage we have completed the construction of the fi
order approximate solution of the field equations. The norm
stresses in~3.11! vary aslnr in the radial direction but are trans
versally uniform, while shear stresses vary only in theu-direction
and contribute very little to the yield stressY. Likewise the radial
velocity profile~3.12! is uniform in the transverse direction whil
the circumferential component’s profile~3.13! varies through the
thickness of the working zone.

The five integration constants that appear in the stresses~3.11!
are determined from five boundary conditions, see also in~@7#!. To
begin with, we assume that no end couples are applied on
working piece. Thus, at the entry and at the exit

E
0

2pE
a1

a2

S rfr 3 sin2 uduf50 (3.14)

where entry/exit surfaces are assumed to be spherical. How
with S rf from ~3.11! being independent ofr we find that the
torsional moment~3.14! vanishes over any spherical cross secti
along the working zone. SubstitutingS rf from ~3.11! in ~3.14!,
and using the small angle approximation sinu'u, gives

ak
25

1

2
~a1

21a2
2!. (3.15)

Next, we consider the twisting momentM* applied by the
stressesSuf along the wallsu5a1 ,a2 . These moments, of equa
magnitude, but in opposite directions in view of~3.14!, are given
by

M* 5E
0

2pE
r out

r in

sufr 2 sin2 udrdf at u5a1 ,a2 . (3.16)

Within our approximationssuf of ~3.11! is independent ofr,
sinu'u, and~3.16! gives

M* 5
p

3
~r in

3 2r out
3 !Y M (3.17)

which is in fact independent of wall angle. Observing that

p

3
~r in

3 2r out
3 !5V (3.18)

is exactly one quarter of the spherical volume included betw
the spheresr 5r in and r 5r out , we find that the integration con
stantM is related to the twisting momentM* by

M5
M*

VY
. (3.19)

Two additional boundary conditions are imposed by surface f
tion data along the rotating conical walls. We assume that
resultant surface shear stress is a fraction of the effective s
stressY/), namely

S ru
2 1Suf

2 5
1

3
m1

2 at u5a1

S ru
2 1Suf

2 5
1

3
m2

2 at u5a2 (3.20)

wheremi( i 51,2) are the surface friction factors, withmi51 for a
perfectly rough wall andmi50 for a smooth wall. Here we as
sume that both friction factors are much smaller than unity. Fr
~3.11!, ~3.7!, and~3.9!, we find that conditions~3.20! become

b21g2
25m1

2 at u5a1

b21g2
25m2

2 at u5a2 (3.21)

or, accounting for the appropriate signs of the shear stresses
Transactions of the ASME



Journal of
Fig. 2 Effect of walls rotation on reducing working loads. Curves are for m 1Äm 2Ä0.05 and a1Ä7deg.
Here MmaxÄ8.62"10À4. Values of cone angles ratio a2 Õa1 are indicated over the curves. In the absence of
rotation zÄ0 and dÄd0 . The theoretical limit for a2 Õa1\1 is given by A1Àz2.
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X1a2
21X2a1

2

X11X2

d5
X11X2

a2
22a1

2 (3.22)

with

X15AS m1a1

)
D 2

2S M

2a1
D 2

X25AS m2a2

)
D 2

2S M

2a2
D 2

.

(3.23)

The expression foras
2 confirms the earlier assumption in~3.11!

that as
2!1. Notice that for our flow patternS ru is positive atu

5a2 but negative atu5a1 , while Suf is positive on both walls.
The last integration constant~D in ~3.11!! is determined by

specifying the entry/exit loading ratio. For long and tapered d
we can identify the extrusion pressureP and the drawing tension
T ~both nondimensionalized with respect toY! with the values of
the radial stressS rr at r 5r in ,r out ~or r5r05r in /r out,1!, respec-
tively. Both processes can be handled together by introducing
loading parameter

h5
T2P

T1P
(3.24)

with h51 in pure drawing (P50) andh521 in pure extrusion
(T50). Thus, withS rr (r51)5T andS rr (r5r0)52P, we find
from the first of~3.11! and definition~3.24! that

D5~11h!~11d!lnr0 (3.25)

which concludes the solution.
A detailed analysis of this first-order solution has been made

Davidi @10#, and to some extent earlier by Durban@7# for power
low viscous tubes. Brovman@6# reports on the case of a perfect
plastic solid cone being extruded through a single conical die
Applied Mechanics
ies

the

by

y
. It

has been found that wall rotation can reduce significantly
working loads and thus improve the efficiency of the formi
process.

Consider for example the case of pure extrusion (h521) with
the extrusion pressure, from~3.11! and ~3.25!,

P52~11d!lnr0 (3.26)

with the nonuniformity parameterd, given by~3.22!–~3.23!,

d5
1

a2
22a1

2 FAS m1a1

)
D 2

2S M

2a1
D 2

1AS m2a2

)
D 2

2S M

2a2
D 2G .

(3.27)

In the absence of friction~m15m250 andM50! d vanishes and
~3.26! becomes the classical uniform extrusion pressure

Pu52lnr0 . (3.28)

For static walls, withM50, we recover from~3.27! the known
tube extrusion formula~@8#!

d05d~M50!5
m1a11m2a2

)~a2
22a1

2!
. (3.29)

Rotation of the walls will divert the direction of the resisting she
stresses along the walls and consequently reduce the req
entry/exit working loads. That phenomenon is apparent fr
~3.27! in pure extrusion as increasing the twisting momentM will
maked smaller. Notice that counter-rotating directions of the tw
conical walls minimizes torsional distortion of the product whi
may occur when only one die is rotating. Interestingly, there i
maximum value permissible forM given by the lower of the two
quantities (2/))mia i

2 i 51,2. In passing, it is worth mentioning
NOVEMBER 2001, Vol. 68 Õ 897
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that since the highest value ofM is of O(ma2) it is quite obvious
that the shear stresses in~3.11! are much smaller thanY as we
have assumed at the outset.

Consider the particular case of equal friction (m15m25m)
with Mmax5(2/))ma1

2. Figure 2 displays the relative reductio
in the working load by showing the ratio (11d)/(11d0) versus
z5M /Mmax for different cone angles ratioa2 /a1 . All curves are
for m15m25m50.05 anda157deg. It can be seen from Fig.
that wall rotation can substantially lower the working loads. T
beneficial effect of rotation is more pronounced for thinner tub
In fact, at the theoretical limit of a vanishing thin tube, wi
a2 /a1→1, we have from~3.27! that

d→d0A12z2 with d05m/)~a22a1! (3.30)

implying that

11d

11d0
→A12z2 as

a2

a1
→1.

An interesting observation that follows from~3.27! is that the
effect of wall friction can be eliminated altogether when

m1a1
25m2a2

2 (3.31)

since in that configuration the twisting momentM5Mmax will
maked vanish by~3.27!, as all surface friction in~3.20! is then
activated bySuf .

The level of helicity induced by wall rotation can be asses
by considering the velocity ratio

j5Ug~u!

f ~u!
U5 3

2
MU u

ak
22

1

uU (3.32)

by ~3.12!–~3.13!. With ak given in ~3.15! we find thatj attains its
maximum atu5a1 , namely

jmax5S 3M

2a1
D a2

22a1
2

a2
21a1

2 . (3.33)

For walls with equal friction, m15m25m, we have Mmax

5(2/))ma1
2 and

jmax5)ma1

a2
22a1

2

a2
21a1

2 . (3.34)

indicating a very low rate of rotation by comparison with th
radial velocity component.

While conical surface shear stresses (S ru ,Suf) are bounded by
friction conditions~3.20!, it is interesting to note that the spheric
surface shear componentS rf is much smaller thanSuf , regard-
less of wall friction. This is evident from~3.11! upon constructing
the ratiouS rf /Sufu and observing that its highest value, attain
at u5a2 , is 3a2(a2

22a1
2)/2(a2

21a1
2). Put differently, uS rfu

51/2j in view of ~3.32!, which to some extent justifies the ave
aged condition imposed in~3.14!.

For the full cylinder (0<u<a) the solution of Eq.~3.3!–~3.5!
has to be bounded along the axisu50. The consistent first-orde
approximation~3.7!–~3.9! is then replaced by

b52)du g15
2)

3
M

u

a4 g25
)

2
M

u2

a4 (3.35)

where constantM is related to the twisting momentM* , applied
over the outer surfaceu5a, by relation~3.19! as obtained from
integral ~3.16! at u5a. The end couples~3.14! are now active,
and the shear stresses within the working zone are

S ru5du S rf52
2

3
M

u

a4 Suf5
1

2
M

u2

a4 (3.36)

with the normal components given by~3.11!.
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The velocity profiles follow from~3.35! as

f 5U g5
4

3
MU

u

a4 (3.37)

inducing the surface helicity

jmax5
4M

3a3 . (3.38)

The wall friction conditionb21g2
25m2 at u5a gives

d5AS m

)a D 2

2S M

2a3D 2

5AS m

)a D 2

2S 3

8
jmaxD 2

(3.39)

implying a maximum moment ofMmax52/) ma2, which is simi-
lar to the tube result~3.27!, whered vanishes.

The linear profile of radial shear stressS ru in ~3.36!, and the
reduction ind due to surface helicity in~3.39!, compare qualita-
tively with the numerical results in~@6#! for small die angles and
low friction.

4 Multilayered Composite Tubes
In this section we examine forming processes of multilaye

tubes~Fig. 3! through rotating conical dies. The composite co
sists of n phases, labeled byi 51,2, . . . ,n, all having identical
entry/exit radii~r5r0 ,1, respectively!. The walls have anglesa0
and an , while a representative layeri is bounded by the cone
a i 21<u<a i . The common virtual apex is at 0 and we assum
that the flow field and stresses within each layer are given w
sufficient accuracy by the approximate solution~3.11! and~3.12!–
~3.13!. The analysis follows an earlier study by Durban@3# for
drawing and extrusion of composite sheets, wires, and tu
through stationary dies.

Denoting the yield stress of each layer byYi it is instructive to
define at the outset the volume-averaged yield stress of the e
composite by

Yav5
1

an
22a0

2 (
i 51

n

~a i
22a i 21

2 !Yi (4.1)

along with the relative yield stress of each phase

yi5
Yi

Yav
i 51,2, . . . ,n. (4.2)

Now, we rewrite the single-phase stress field~3.11! for each layer,
with all stress components nondimensionalized with respec
Yav ,

Fig. 3 Notation for composite multilayered tube drawing or
extrusion. The composite consists of n layers „ iÄ1,2, . . . ,n …
with the i th layer bounded by the cones a iÀ1ÏuÏa i . All layers
have common entry Õexit radii „rÄr in ,r out … and wall angles are
a0 ,an .
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S rr
i 522yi~11d i !lnr1Di

Suu
i 5Sff

i 522yi~11d i !lnr1Di2yi

S ru
i 5yid i S u2

as,i
2

u D S rf
i 5

3

4
yiM i S 1

u
2

u

ak,i
2 D Suf

i 5
yiM i

2u2 .

(4.3)

There are five integration constants (d i ,Di ,as,i ,ak,i ,Mi) in each
of then layers. Also, the associated velocity field in each phas

ui52
Ui

r 2 wi5
3

2
Mi S u

ak,i
2 2

1

u D Ui

r 2 (4.4)

not accounting for the rigid-body rate of rotation in~2.4!. The
velocity field adds one more integration constant (Ui) at each
layer.

Radial velocity continuity at the interfaces implies immediate
the common radial component

Ui5U i 51,2, . . . ,n (4.5)

while circumferential velocity continuity gives the (n-1) equa-
tions

Mi 112Mi

a i
2 5

Mi 11

ak,i 11
2 2

Mi

ak,i
2 i 51,2, . . . ,n21. (4.6)

Interfacial continuity of normal stresses results in two sets
equations

yi 11d i 112y1d i52~yi 112yi ! (4.7a)

Di 112Di5yi 112yi (4.7b)

both for i 51,2, . . . ,n21.
Stress continuity conditions are completed with the requirem

that bothS ru andSuf pass smoothly at each interface. This give
respectively,

yi 11d i 11as,i 11
2 2yid ias,i

2 5~yi 11d i 112yid i !a i
2 (4.8)

yi 11Mi 115yiM i (4.9)

again fori 51,2, . . . ,n21.
However, the external twist relation~3.16!, applied here atu

5a0 andu5an , gives the simple result

M* 5VYavyiM i i 51,n, (4.10)

V being one quarter of the included spherical volume~3.18!.
Combining ~4.10! with ~4.9! we find that constantsMi are now
completely determined by~with M̄ replacingM in ~3.19!!

yiM i5
M*

VYav
5M̄ i 51,2, . . . ,n. (4.11)

Vanishing of end torsion—written in~3.14! for a single phase—
takes here the form

(
i 51

n

yiM iE
a i 21

a i S u2
u3

ak,i
Ddu50. (4.12)

Applying the small angle approximation, integrating~4.12!, using
~4.11! and arranging finally gives

(
i 51

n S a i
42a i 21

4

ak,i
2 D 52~an

22a0
2!. (4.13)

Turning to the loading condition~3.24! we find, by ~4.3!, that
end loads for multilayered tubes are given by

T5
2

an
22a0

2 (
i 51

n

S rr
i ~r51!E

a i 21

a i

udu5
1

an
22a0

2 (
i 51

n

Di~a i
2

2a i 21
2 ! (4.14)
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P52
2

an
22a0

2 (
i 51

n

S rr
i ~r5r0!E

a i 21

a i

udu5
2lnr0

an
22a0

2 (
i 51

n

yi~11d i !

3~a i
22a i 21

2 !2
1

an
22a0

2 (
i 51

n

Di~a i
22a i 21

2 !. (4.15)

Now, it is deduced from~4.7! that

yi~11d i !511 d̄ and Di2yi5D̄21 (4.16)

where d̄ and D̄ are universal constants common for all laye
Observing the two simple identities

(
i 51

n

yi~11d i !~a i
22a i 21

2 !5~11 d̄ !~an
22a0

2!

(
i 51

n

Di~a i
22a i 21

2 !5D̄~an
22a0

2! (4.17)

we find that the working stresses~4.14!–~4.15! become

T5D̄ P52~11 d̄ !lnr02D̄. (4.18)

A further substitution of~4.18! in the loading condition~3.24!
results in the connection

D̄5~11h!~11 d̄ !lnr0 (4.19)

which is identical with the single-phase relation~3.25!, but with
(D,d) replaced by the averaged constants (D̄,d̄). Both constants
are volume averages ofDi and yid i , respectively, as is eviden
from ~4.16!.

We still have to implement the friction conditions~3.20!, which
for the composite tube read

~S ru
1 !21~Suf

1 !25
1

3
~y1m0!2 at u5a0

~S ru
n !21~Suf

n !25
1

3
~ynmn!2 at u5an (4.20)

where (m0 ,mn) are the friction factors along the external wall
Substituting the shear stresses from~4.3! in ~4.20! we obtain the
equations

2y1d1~a0
22as,1

2 !5AS y1m0a0

)
D 2

2S M̄

2a0
D 2

5X̄1

(4.21)

yndn~an
22as,n

2 !5AS ynmnan

)
D 2

2S M̄

2an
D 2

5X̄2 (4.22)

with due account of the shear stresses directions. The definit
of X̄1 ,X̄2 in ~4.21!–~4.22! may be compared with those ofX1 ,X2
in ~3.23! for the single phase tube. Equations~4.21!–~4.22! are
conveniently combined to give the relation

yndnas,n
2 2y1d1as,1

2 5yndnan
22y1d1a0

22~X̄11X̄2!.
(4.23)

However, the l.h.s. of~4.23! can be constructed differently b
summing up equations~4.8! from i 51 to i 5n21, namely

yndnas,n
2 2y1d1as,1

2 5(
i 51

n21

~yi 11d i 112y1d i !a i
2

5an
22a0

22~ynan
22y1a0

2!
(4.24)

on account of the first of~4.16!. Thus, from~4.23!–~4.24!

yndnan
22y1d1a0

22~X̄1X̄2!5an
22a0

n2~ynan
22y1a0

2!
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Fig. 4 Variation of M̄max and 1¿d̄„M̄ÄM̄max… with wall data. Optimal design
where d̄Ä0 corresponds to the line of intersection of the M̄max pyramid faces
where m 0a0

2y 1Äm nan
2y n . Results are for composite multilayered tubes.
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or, again with use of~4.16!,

d̄5
X̄11X̄2

an
22a0

2 , (4.25)

which may be compared with~3.22!. In the absence of rotation th
expression ford̄ agrees with that of~@3#! for composite tubes.

Having the solution ford̄ determines also constantD̄, by
~4.19!, and in turn constants (d i ,Di) are now known from~4.16!
for all layers. In fact, the working stresses~4.18! are now com-
pletely known, even without the solution for constantsas,i and
ak,i . In pure extrusion, for example, withh521, we have the
working stress

P52~11 d̄ !lnr0 (4.26)

with d̄ given by ~4.25!.
Constantsas,i are easily found from~4.8! and ~4.21!. In fact,

constantas,1 is given by ~4.21!—and similarlyas,n is given by
~4.22!—so if we sum up Eq.~4.8! from i 51 to i 5 j 21 the re-
sulting expression

yjd jas, j
2 2y1d1as,1

2 5a j
2S Yav

j

Yav
2yj D 2a0

2S Yav
j

Yav
2y1D (4.27)

completely determines constantsas, j . Here,Yav
j is the volume-

averaged yield stress, over the firstj layers, defined by

Yav
j 5

1

a j
22a0

2 (
i 51

j

~a i
22a i 21

2 !Yi . (4.28)

The last integration constants that need to be determined areak,i
of Eqs.~4.6! and ~4.13!. This particular system is sufficient sinc
constantsMi are given by~4.11!. The solution procedure is simi
lar to the technique we have applied in finding constantsas, j .
Taking the sum of Eq.~4.6! from i 51 to i 5 j 21 gives each
constantak, j in terms ofak,1 namely

M j

ak, j
2 2

M1

ak,1
2 52(

i 51

j

M i S 1

a i
22

1

a i 21
2 D 1

M j

a j
22

M1

a0
2 . (4.29)

A further substitution ofak,i
22 from ~4.29! in ~4.13! leads to a

single equation forak,1 . Solution of that equation, which is linea
MBER 2001
e

r

in ak,1
22, determines all other constantsak,i by ~4.29!. For future

use we shall just record here the expression forak,1 as

M1S 1

ak,1
2 2

1

a0
2D(

j 51

n
a j

42a j 21
4

M j

5(
j 51

n S a j
42a j 21

4

M j
D F(

i 51

j

M i S 1

a i
22

1

a i 21
2 D G

2(
j 51

n
a j

42a j 21
4

a j
2 12~an

22a0
2!. (4.30)

5 Discussion and Conclusions
As in the single-phase process, wall rotation lowers the requ

working stresses in composite tube forming. Taking the pure
trusion case~4.26! as an example we find from~4.25! and~4.21!–
~4.22! that the value ofd̄ can be considerably reduced by applyin
torsional momentM̄ . That moment is bounded by the smaller
the quantities (2/))y1m0a0

2 and (2/))ynmnan
2. Evidently, an

optimal design appears to be characterized by the relation

y1m0a0
25ynmnan

2 (5.1)

with M̄5M̄max making d̄ vanish. The extrusion pressure is the
given by the uniform process relation~3.28! with the averaged
yield stress of the composite~4.1!. By comparison with~3.31! we
find that for composite tubes~5.1! provides more degrees-of
freedom in improving the forming process by an appropri
choice ofy1 andyn .

Figure 4 displays the variation ofM̄max, and of 11 d̄(M̄
5M̄max) with wall data~values ofma2y/) on both boundaries!
as evaluated from~4.25!. The pyramid shape ofM̄max follows
immediately from~4.21!–~4.22!, when eitherX̄1 or X̄2 vanish,
with the optimal design~5.1! at the intersection of the pyramid
faces. The nonuniformity parameterd̄ vanishes along the optima
design line~where X̄15X̄250! in Fig. 4 and increases monoto
nously with each of the wall parameters (ma2y/)). As expected,
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Fig. 5 Drawing stress T for mild steel „MS… tubes with fixed inner wall angle of a0Ä7deg
É0.12 rad. Upper curve is for stationary dies. Lower curves are for rotating dies at M̄max . Also shown
is the influence of cladding of external surface with brass „Br … or with copper „Cu…. Friction factors in
all cases are mÄ0.06 on both walls.
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M̄max remains small~about O(1023)!, but the working stresses
scaled by (11 d̄), may increase considerably over the unifor
value.

A specific example, shown in Fig. 5, illustrates the advantag
rotational forming for drawing through conical dies with inn
wall angle of a057deg'0.12 rad and equal friction factorsm
50.06 on both walls. Results for a single phase tube, mad
mild steel~MS! with a yield stress of 584.8 MPa, show the redu
tion in drawing stressT, due to wall rotation atM̄max, for various
external wall anglesa1 . With a1512 deg'0.21 rad, for ex-
ample, wall rotation lowers the drawing stress by 11.5 perc
Also shown in Fig. 5 are curves for the drawing stress with cl
ding of the outer surface. Cladding material is brass~Br! with Y
5355.6 MPa, or copper~Cu! with Y5277 MPa. The friction fac-
tors remain the same~0.06! on both walls, but the boundary pa
rameters (ma2y/)) are of course different for each cladding. A
a1512 deg we have with the brass cladding a reduction of 1
percent in the drawing stress as compared to single-phase dra
without rotation. With copper cladding the reduction inT is 22.5
percent. In this example we have assumed that cladding thick
is extremely thin so that the average yield stress of the compo
equals that of mild steel.

The multilayered tube forming analysis presented here is
course within the framework of the basic assumptions of long
tapered working zones and small wall friction. A further issue t
should be examined here are the shear stresses induced by
facial jumps of yield stresses across adjacent layers. Conside
example the radial componentS ru

i at u5a i , from ~4.3!

S ru
i ~a i !5

s ru
i ~a i !

Yav
5yid i S a i2

as,i
2

a i
D . (5.2)

Surely, the true stress components ru
i should be much smaller tha

the yield stressYi—so as to comply with our approximat
solution—and in particulars ru

i (a i) should be smaller than bot
Yi andYi 11 . To this end we rewrite~5.2! as
pplied Mechanics
,
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a is ru
i ~a i !5

~a i
22a0

2!~an
22a i

2!

an
22a0

2 ~Yav
n2~ i 11!2Yav

i !

1
~a i

22a0
2!X̄22~an

22a i
2!X̄1

an
22a0

2 Yav (5.3)

whereYav
n2( i 11) is the volume-averaged yield stress of all laye

from i 11 to n. Thus, even in an optimal forming process, whe
X̄15X̄250, the jump in the relative averages of yield stre
(Yav

n2( i 11)2Yav
i ) can induce considerable shear at the interfa

~and within the working zone as well!. A full analysis of the
complete nonlinear system of the governing equations is t
needed to investigate the forming process.

We may conclude that wall rotation, in steady forming of com
posites through conical dies, can considerably reduce the requ
working loads as well as the normal pressure acting on the w
With a judicious choice of layers constituents, particularly t
external layers, it should be possible to control the process par
eters and interfacial stresses. The potentially higher reduct
which can be achieved through rotating dies call for a furth
study of this forming pattern beyond the simplifying assumptio
employed in the present work.
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of that result is limited by the fact that it was obtained under the assumption tha
moment p is small, a limitation which precludes, for example, the determination o
stability index. In this paper that limitation is removed and an asymptotic approxima
valid for arbitrary p is obtained. The results are applied to study the moment stabilit
the stationary solutions of structural and mechanical systems subjected to stoc
excitation. @DOI: 10.1115/1.1387021#
-

-

r
n

o

o

o-

ee-

an
for

ific

era-
ov
sed
ma-
stic
nov
astic

mu-

nov
we
ent
and
s is
ing
has-
stic
po-
rob-
ious
roxi-
the
tic
wer

e
w
M

1 Introduction
In the study of stability of solutions of random dynamical sy

tems, the exponential growth rate ofEix(t;x0)ip is provided by
the moment Lyapunov exponent defined as

g~p;x0!5 lim
t→`

1

t
log Eix~ t;x0!ip,

wherex(t;x0) is the solution process of a linear random dynam
cal system. Ifg(p;x0),0, then, by definition,Eix(t;x0)ip→0 as
t→` and this is referred to aspth moment stability. The connec
tion between moment stability and almost-sure stability for
undamped linear oscillator under real noise excitation was es
lished for the first time by Molcˇanov @1#. These results were ex
tended for an arbitraryd-dimensional system by Arnold@2# where
a concise formulation of the relation between almost-sure sam
stability andpth mean stability is presented. The complete set
results on the so-called moment Lyapunov exponent, its prope
and generators is obtained in two consecutive papers by Ar
et al. @3,4# for real and white noise situations, respectively.

The systems under consideration consist of parametrically
cited two-degree-of-freedom models. Such models are enc
tered in the study of linear or nonlinear mechanical systems s
jected to fluctuating loading or imposed displacements, as sh
in Section 5. Consider, for example,

ÿ112zv1ẏ11v1
2y11g1~y1 ,y2!5w~ t !,

ÿ212zv2ẏ21v2
2y21y2g2~y1 ,y2!50,

whereg1(0,0)50, ]g1 /]y2(y1,0)Þ0, andw(t) is a white noise
process. The stability of the solution~y15j(t), y250! is gov-
erned by a set of variational equations of the form

q̈i1v i
2qi12zv i q̇i1(

j 51

2

k̃i j ~j~ t !!qj50, i , j 51,2, (1)

with j(t) defined by
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j̈12zv1j̇1v1
2j1g1~j,0!5w~ t !. (2)

In many problems of practical interest, thek̃i j ’s are of the form

k̃i j ~j!5ki j f ~j!.

This is the form we examine so~1! becomes

q̈i1v i
2qi12zv i q̇i1(

j 51

2

ki j qj f ~j~ t !!50, i , j 51,2. (3)

The aim of this paper is to study the moment behavior of tw
degree-of-freedom systems given by Eq.~3!. The small noise ex-
pansions of the moment Lyapunov exponent for this two-degr
of-freedom system were obtained by Sri Namachchivaya et al.@5#
for small p. In this paper, these results are extended to obtain
asymptotic representation of the moment Lyapunov exponent
finite p. As before we consider a real noise excitation with spec
infinitesimal generatorG. It is assumed thatG has an isolated
simple zero eigenvalue. In this paper, we have derived the gen
tor L(p), whose principal eigenvalue is the moment Lyapun
exponent, by two different procedures. The first method is ba
on an asymptotic expansion similar to that presented in Sri Na
chchivaya et al.@5# and the second method is based on stocha
averaging. Although it has been shown that moment Lyapu
exponents are based on large deviation phenomena, the stoch
averaging scheme along with Girsanov and Feynman-Kac for
las yield the same result forL(p) as the asymptotic method.

Section 2 describes the general theory of moment Lyapu
exponents for linear systems with real noise. In Section 3
obtain the appropriate eigenvalue problem for the mom
Lyapunov exponent. A small noise expansion is constructed
the moment Lyapunov exponent in terms of spectral densitie
calculated in Section 3.1. In Section 3.2, the equation govern
the moment Lyapunov exponent is obtained by means of stoc
tic averaging and some discussions on the validity of stocha
averaging in determining Lyapunov and moment Lyapunov ex
nents are given. An orthogonal expansion for the eigenvalue p
lem based on Galerkin method is presented in Section 4. Var
cases of interest are obtained numerically based on this app
mation. In Section 5, these results are applied to study
flexural-torsional stability of a narrow simply supported elas
beam under fluctuating end moments or a stochastic follo
force.
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2 Real Noise Case
This section provides a summary of essential results for m

ment Lyapunov exponents. It is included to give an outline of
central ideas involved in the arguments. The reader is referre
Arnold et al.@3,4# for details of the theorems. The complete set
equations required for calculating the moment Lyapunov ex
nents is also presented.

For the real noise case, consider

ẋ5A~j~ t !!x, xPRd,
(4)

dj5X0~j!dt1(
i 51

r

Xi~j!+dWi , jPM .

In order to ensure that there is a unique smooth and pos
invariant densityn on the compact manifoldM, assumej(t) is
strongly elliptic in the sense that dimLA(X1 , . . . ,Xr)(j)
5dim M for all jPM , where LA(Z) denotes the Lie algebra
generated by the setZ of vector fields. Introducing polar coordi
nates inRd through the Khas’minskii transformation

s5
x

ixi
PSd21 and ixiPR1

gives the following equations of motion:

ix~ t;x0!i5ix0iexpH E
0

t

q~j~t!,s~t!!dtJ ,

ṡ5h~j~ t !,s!,

where

q~j~t!,s~t!!5sTA~j~t!!s and h~j~ t !,s!5~A2qI !s.

The pair (j,s) together form a diffusion process onM3Pd21

~obtained fromSd21 by identifyings and2s! whose generator is
given by

L5G1h
]

]s
,

whereG5X011/2( i 51
r Xi

2 is the generator ofj written in Hör-
mander form. For a fixedjPM , h(j,•) is a vector field on the
projective space. To avoid degenerate situations forL, the follow-
ing ellipticity condition is imposed:

~H !dim LAFX01h1
]

]t
,X1 , . . . ,Xr G~j,s,t !5dim M1d

;~j,s,t !PM3Pd213R.

Combining the above results with the definition of mome
Lyapunov exponents yields

g~p;x0!5 lim
t→`

1

t
log EFexpH pE

0

t

q~j~t!,s~t!!dtJ G
for pPR, and fixedx0PRd\$0%.

The following was proven by Arnold et al.@3#:
THEOREM 1. Assume (H):
1 Let l5*M*Pd21q(j,s)dm where m is the unique invariant

probability measure of(j,s) on M3Pd21. Thenl is the maximal
Lyapunov exponent for (4), i.e., for x0Þ0

lim
t→`

1

t
logix~ t;x0!i5l almost-surely.

2 For pPR, let g(p) be the principal eigenvalue of L(p)5L
1pq(j,s) acting on C(M3Pd21). Then g(p) is the pth moment
Lyapunov exponent for (4), i.e., for x0Þ0
904 Õ Vol. 68, NOVEMBER 2001
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lim
t→`

1

t
log Eix~ t;x0!ip5g~p!.

Moreover, g:R→R is convex and analytic, g(p)/p is increasing,
g(0)50, g8(0)5l, and the corresponding eigenfunction of g(p)
is non-negative. Furthermore, g9(0) is the variance in the centra
limit theorem, i.e.,

1

At
~ logix~ t;x0!i2lt !⇀N~0,g9~0!!~ t→`! for any x0Þ0,

whereN is the normal distribution and⇀ denotes weak conver
gence.

Consider the operatorL(p) and its adjointL* (p). By Theorem
1, g(p) is an isolated simple eigenvalue ofL(p) with non-
negative eigenfunctionc(p) such thatic(p)i51. The adjoint
operatorL* (p) has an eigenfunctionn(p) corresponding tog(p)
which is unique and has the property^c(p),n(p)&51, i.e.,

L~p!c~p!5g~p!c~p!, ^c~p!,n~p!&51 ;pPR. (5)

3 Moment Lyapunov Exponent for Coupled
Oscillators

Consider linear oscillatory systems described by equations
motion of the form

q̈i1v i
2qi12«2zv i q̇i1«(

j 51

2

ki j qj f ~j~ t !!50, i , j 51,2, (6)

where theqi ’s are generalized coordinates,v i is the ith natural
frequency, and«z represents a small viscous damping coefficie
It is assumed that the natural frequencies arenoncommensurable.
The stochastic termj(t) is a real-noise process on a smooth co
nected Riemannian manifoldM ~with or without boundary! with f
a smooth nonconstant function defined onM. The associated in-
finitesimal generator is assumed to have the form

G~j!5(
i 51

n

m i~j!
]

]j i
1

1

2 (
k51

r F(
i 51

n

s i
k~j!

]

]j i
GF(

i 51

n

s i
k~j!

]

]j i
G .

(7)

In order to make the problem tractable,G will be assumed to have
an isolated simple zero eigenvalue. Hence, the only solution of
Gu50 is u[constant. It follows that the associated adjoint ope
tor G* also has zero as a simple, isolated eigenvalue and
normalized invariant measurev(j)dj satisfiesG* v(j)50.

The almost-sure stability of the equilibrium stateq5q̇50 of
Eq. ~6! is to be investigated. Using the transformationqi
5x2i 21 , q̇i5v ix2i , i 51,2, Eq. ~6! may be represented by th
following system of Stratonovich differential equations:

ẋ5Ax1 f ~j~ t !!Bx,
(8)

dj5m~j!dt1s~j!+dWt ,

whereA andB are 434 constant matrices given by

A5F 0 v1 0 0

2v1 22«2zv1 0 0

0 0 0 v2

0 0 2v2 22«2zv2

G ,

B5«F 0 0 0 0

2k11/v1 0 2k12/v1 0

0 0 0 0

2k21/v2 0 2k22/v2 0

G . (9)

3.1 Asymptotic Results for Coupled Oscillators. Apply-
ing the transformations
Transactions of the ASME
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x15er cosf1 cosu, x252er sinf1 cosu,
(10)

x35er cosf2 sinu, x452er sinf2 sinu,

yields the following set of equations for the logarithm of the a
plitude r, phase variables (f1 ,f2 ,u) and noise processj:

ṙ5(
j 50

2

« jqj~f1 ,f2 ,u,j!, u̇5(
j 50

2

« j sj~f1 ,f2 ,u,j!,

(11)

ḟ i5(
j 50

2

« jhi
j~f1 ,f2 ,u,j!, dj5m~j!dt1s~j!+dWt ,

(12)

where q0(f1 ,f2 ,u,j)[0, s0(f1 ,f2 ,u,j)[0, hi
0(f1 ,f2 ,u,j)

5v i and

q1~f1 ,f2 ,u,j!5
1

4
f ~j!@q0

1~f1 ,f2!1qc
1~f1 ,f2!cos 2u

1qs
1~f1 ,f2!sin 2u#,

q0
1~f1 ,f2!5p11 sin 2f11p22 sin 2f2 ,

qc
1~f1 ,f2!5p11 sin 2f12p22 sin 2f2 ,

qs
1~f1 ,f2!5p21

1 sinf12p21
2 sinf2,

s1~f1 ,f2 ,u,j!5
1

4
f ~j!@s0

1~f1 ,f2!1sc
1~f1 ,f2!cos 2u

1ss
1~f1 ,f2!sin 2u#,

s0
1~f1 ,f2!5p21

2 sinf12p21
1 sinf2,

sc
1~f1 ,f2!5p21

1 sinf12p21
2 sinf2,

ss
1~f1 ,f2!5p22 sin 2f22p11 sin 2f1 ,

h1
1~f1 ,f2 ,u,j!5

1

2
f ~j!@h1~0!

1 ~f1!1h1~u!
1 ~f1 ,f2!tanu#,

h2
1~f1 ,f2 ,u,j!5

1

2
f ~j!@h2~0!

1 ~f2!1h2~u!
1 ~f1 ,f2!cotu#,

h1~0!
1 ~f1!5p11~11cos 2f1!,

h1~u!
1 ~f1 ,f2!5p12~cosf11cosf2!,

h2~0!
1 ~f2!5p22~11cos 2f2!,

h2~u!
1 ~f1 ,f2!5p21~cosf11cosf2!,

q2~f1 ,f2 ,u,j!5q0
2~f1 ,f2!1qc

2~f1 ,f2!cos 2u,

q0
2~f1 ,f2!52

1

2
@d1~12cos 2f1!1d2~12cos 2f2!#,

qc
2~f1 ,f2!52

1

2
@d1~12cos 2f1!2d2~12cos 2f2!#,

s2~f1 ,f2 ,u,j!5ss
2~f1 ,f2!sin 2u,

ss
2~f1 ,f2!5

1

2
@d1~12cos 2f1!2d2~12cos 2f2!#,

hi
2~f i !52d i sin 2f i .

In the above expressions,p21
6 5p216p12, f65f16f2 , d i

5zv i andpi j 5ki j /v i .
Since the processes (f1 ,f2 ,u,j) do not depend onr, the pro-

cesses (f1 ,f2 ,u,j) alone form a diffusive Markov process an
the associated generator is given by
Journal of Applied Mechanics
-

d

L«~p!5L0~p!1«L1~p!1«2L2~p!,

where

L0~p!5G~j!1(
i 51

2

v i

]

]f i
1pq0~f1 ,f2 ,u,j!5..L01pq0;

L1~p!5s1~f1 ,f2 ,u,j!
]

]u
1(

i 51

2

hi
1~f1 ,f2 ,u,j!

]

]f i

1pq1~f1 ,f2 ,u,j!5..L11pq1;

L2~p!5s2~f1 ,f2 ,u,j!
]

]u
1(

i 51

2

hi
2~f1 ,f2 ,u,j!

]

]f i

1pq2~f1 ,f2 ,u,j!5..L21pq2.

In Sri Namachchivaya et al.@5# use was made of the analyticit
of g(p) to Taylor expand inp. Each coefficient in the Taylor
series was then further expanded in«. With this double expansion
in both « and p an expression forg(p) valid to o(«2p2) was
obtained. However, the restriction to small values ofp limits the
utility of that result, particularly with regard to the calculation o
the stability index as pointed out by Khasminskii and Moshch
@6#. Here we remove the smallp restriction and consider an ex
pansion of the moment Lyapunov exponent in powers of« only:

g«~p!5g0~p!1«g1~p!1«2g2~p!1O~«2!.

It has been shown that such an expansion is asymptotic as in
Namachchivaya et al.@5#, Khasminskii and Moshchuk@6#, Arnold
et al.@7#, and Pardoux and Wihstutz@8#. Insertion of these expan
sions into Eq.~5! leads to the following sequence of Poisso
equations:

~L0~p!2g0~p!!c050; (13)

~L0~p!2g0~p!!c15g1~p!c02L1~p!c0 ; (14)

~L0~p!2g0~p!!c25g2~p!c01g1~p!c12L2~p!c02L1~p!c1 .
(15)

3.1.1 The Solution toO(1). Sinceq0(f1 ,f2 ,u,j)[0, it fol-
lows from the definition ofg(p) thatg0(p)[0. Thus the operator
L0(p) reduces toL0 and Eq.~13! becomes

L0c050.

Since the equations to be solved involve the differential opera
L0 at each stage, the solution of the corresponding adjoint pr
lem L0* C050, along with periodic boundary conditionsC0(f1
12p,f2 ,u,j)5C0(f1 ,f212p,u,j)5C0(f1 ,f2 ,u,j), is re-
quired. SinceG has an isolated simple zero eigenvalue, and
frequenciesv1 and v2 are noncommensurable it can be show
~see@9#! that the solution is

C0~u,j!5
n~j!F~u!

4p2 ,

whereF is an arbitrary function. By a similar argument it follow
thatc0Pker(L0)5$C(u):C is an arbitrary function ofu%. There-
fore c05c0(u), a function ofu which has yet to be determined

3.1.2 The Solution toO(«). Inserting the above expressio
for c0 into Eq. ~14! results in

L0c152s1~f1 ,f2 ,u,j!c081@g1~p!2pq1~f1 ,f2 ,u,j!#c0 .
(16)

The eigenvalueg1(p) is obtained from the solvability condition
Applying the solvability condition to the above equation yields
NOVEMBER 2001, Vol. 68 Õ 905
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g1~p!5^q1c01s1c08 ,C0&

5
1

16p2 ^ f ~j!R1~f1 ,f2 ,u;p!,n~j!F~u!&50, (17)

where

R1~f1 ,f2 ,u;p!5p@q0
1~f1 ,f2!1qc

1~f1 ,f2!cos 2u

1qs
1~f1 ,f2!sin 2u#c01@s0

1~f1 ,f2!

1sc
1~f1 ,f2!cos 2u

1ss
1~f1 ,f2!sin 2u#c08~u!,

^~• !,~•• !&5E
0

p/2E
M
E

0

2pE
0

2p

~• !~•• !df1df2djdu.

The last equality in Eq.~17! follows from the fact that
R1(f1 ,f2 ,u;p) is periodic in f1 and f2 , and f (j) is a zero
mean process. In terms ofR1(f1 ,f2 ,u;p), Eq. ~14! reduces to

L0c152
1

4
f ~j!R1~f1 ,f2 ,u;p!. (18)

The solutionc1 of the above equation can be expressed in te
of the Green’s functiong(j,t;h,0) for the operatorG and can be
written as~see@5#!

c1~f1 ,f2 ,u,j;p!

5
1

4 E0

`

K~j,t!R1~f11v1t,f21v2t,u;p!dt. (19)

3.1.3 The Solution toO(«2). Employing the above results
Eq. ~15! for c2 becomes

L0c25@g2~p!2pq2~f1 ,f2 ,u,j!#c02s2~f1 ,f2 ,u,j!c08

2L1c1~f1 ,f2 ,u,j;p!. (20)

The solvability condition for this equation is

^g2~p!C0 2pq2C0 2s2c082L1c1 ,C0&50. (21)

Making use of the correlation function off (j) and the cosine
spectrum given, respectively, by

R~t!5E
M

f ~j!K~j,t!dt, S~v!52E
0

`

R~t!cosvtdt,

the solvability condition~21!, after some calculation, reduces to

E
0

p/2H [g2~p!2pQ~u!2
1

2
p2Q̂~u!]C02@m~u!1pm̂~u!#c08~u!

2
1

2
s2~u!c09~u!JF~u!du50, (22)

where

m~u!5s2~u!cot 2u2
1

2
L sin 2u,

m̂~u!5
1

2
~B2E12A cos 2u!sin 2u,

Q~u!5s2~u!1
1

2
L cos 2u1D,

Q̂~u!5F1E cos 2u2A cos2 2u,

s2~u!5A cos2 2u1B cos 2u1C,

with the constants given by
906 Õ Vol. 68, NOVEMBER 2001
ms

,

A5
1

32H ~p211p12!
2S~v1!1~p212p12!

2S~v2!

2(
i 51

2

pii
2S~2v i !J ,

B5
1

16
~p21

2 2p12
2 !~S~v1!1S~v2!!,

C5
1

32H ~p212p12!
2S~v1!1~p211p12!

2S~v2!

1(
i 51

2

pii
2S~2v i !J ,

D5
1

2
~L11L2!1

1

8
p21p12~S~v1!2S~v2!!,

E5
1

16
$p11

2 S~2v1!2p22
2 S~2v2!%,

F5
1

32H ~p211p12!
2S~v1!1~p212p12!

2S~v2!

1(
i 51

2

pii
2S~2v i !J ,

L i52d i1
1

8
pii

2S~2v i !, i 51,2,

L5L12L2 , v65v16v2 .

Since Eq.~22! must hold for arbitraryF~u!, the bracketed quan
tity must vanish identically. This leads to the following differenti
equation forc0 :

L̃~p!c0ª
1

2
s2~u!c091@m~u!1pm̂~u!#c08

1FpQ~u!1
1

2
p2Q̂~u!Gc0

5g2~p!c0 . (23)

We reiterate that Eq.~23! was derived without any restriction o
the size ofp. This equation along with appropriate boundary co
ditions forms the eigenvalue problem for whichg2(p) is the prin-
cipal eigenvalue. We note in passing that a Taylor series expan
of the above equation inp allows us to recover the equations
Sri Namachchivaya et al.@5#. Boundaries for theu process are not
physical, thus it is not clear what boundary conditions one sho
use to solve the eignenvalue problem~23!. However, our earlier
work ~@5#! for small p suggests that the boundary behavior forp
50, which can be obtained by the Feller boundary classificat
would be appropriate for determining the moment Lyapunov
ponentg(p).

The boundary conditions are determined by considering the
joint equation withp50:

L̃* ~m̃~u!!ª
1

2

d2

du2 ~s2~u!m̃~u!!2
d

du
~m~u!m̃~u!!50. (24)

Appropriate boundary conditions form̃(u) are based on the Felle
boundary classification. This can also be justified from trans
mation ~10!, or equivalently~28! that u50 implies a150, and
u5p/2 implies a250. It is clear physically that unless the cou
pling coefficientsp12 and p21 are both zero, it is not possible t
have a solution with eithera1 or a2 identically zero. Thus,m̃(u)
Transactions of the ASME



t

d

t

a

y

e

s

s

nt
will not represent a point mass atu50 or u5p/2. Moreover, this
assertion can also be justified by applying the Feller classifica
based on scale and speed measures for them̃(u) process. It can be
shown, as in Sri Namachchivaya and Van Roessel@9#, that u50
andu5p/2 are entrance boundaries. It is clear from Eq.~24! that
the probability current is given by

Ast52m~u!m̃~u!1
1

2

d

du
@s2~u!m̃~u!#. (25)

The solution to the Fokker-Planck equation can be written as

m̃~u!5m~u!@2AstS~u!1C#, (26)

where the scale and speed measures are defined in terms ofm~u!
ands~u! as

m~u!5@s2~u!s~u!#21, s~u!5expH 2E u 2m~h!

s2~h!
dhJ ,

S~u!5E u

s~h!dh,

andm̃(u) satisfies boundary and normality conditions. Sinceu50
and u5p/2 are entrance boundaries, it can be shown that
boundary conditions form̃(u), are given byAst50. Thus apply-
ing the appropriate inner product and using the above boun
condition gives

E
0

`

L̃* ~m̃~u!!c0~u!du

5E
0

`

L̃~c0~u!!m̃~u!du2
1

2
s2~u!m̃~u!c0~u!U

0

p/2

,

which yields zero Neumann boundary conditions forc0 .
THEOREM 2. Suppose the system of Eqs. (11), (12) satisfies

condition (H), G has an isolated simple zero eigenvalue and
frequenciesv1 and v2 are noncommensurable. The asympto
expansion of the moment Lyapunov exponent of Eq. (8) is give

g«~p!5«2g2~p!1O~«2!, (27)

where g2(p) is the largest eigenvalue of the Eqs. (23) with ze
Neumann boundary conditions.

3.2 Results Based on Stochastic Averaging.In this sec-
tion, we shall obtain theL̃(p) operator defined in Eq.~23!, using
the method of stochastic averaging. The underpinning of the c
sical stochastic averaging method is a separation of time scale
that the state variables of fast time scales can be averaged w
the equations of the slow variables are approximated. A m
ematically rigorous proof of this result was given by Khasmins
@10#. Since then, several authors have developed the theor
various directions using various assumptions. Due to the fact
solutions of the original equations converge weakly to the av
aged equation, it is not obvious that averaging for the purpos
obtaining results on Lyapunov and moment Lyapunov exponen
appropriate. Using Girsanov’s theorem along with the Feynm
Kac formula, we will show that the method of averaging is inde
justified.

In order to apply this method we transform the equations
motion ~8! to a standard form. To this end we shall make use
transformations similar to Eq.~10!, i.e.,

x15a1 cosF1 , x252v1a1 sinF1 , F15v1t1f1 ,
(28)

x35a2 cosF2 , x452v2a2 sinF2 , F25v2t1f2 ,

which yield the following set of equations for the amplitudesa
5(a1 ,a2), phase variablesf5(f i ,f2):

ȧi5«Fi
1~a,f,t ! f ~j~ t !!1«2Fi

2~a,f,t !z i , (29)

ḟ i5«Gi
1~a,f,t ! f ~j~ t !!1«2Gi

2~a,f,t !z i , (30)
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where

Fi
1~a,f,t !5

pii

2
ai sin 2F i1

pi j

2
aj~sin~v i j

1t1f i j
1!

1sin~v i j
2t1f i j

2!!, (31)

Gi
1~a,f,t !5

pii

2
~cos 2F i11!1

pi j

2

aj

ai
aj~cos~v i j

1t1f i j
1!

1cos~v i j
2t1f i j

2!!, (32)

Fi
2~a,f,t !5v iai~12cos 2F i !, v i j

65v i6v j , (33)

Gi
2~a,f,t !5v i sin 2F i , f i j

65f i6f j . (34)

Here the noise processj(v,t) is a stationary stochastic proces
with mean zero whose correlation functionR(t) decays suffi-
ciently quickly to zero ast increases, implyingj(v,t) satisfies
the strong mixing condition~Khasminskii@10#!. According to the
averaging theorem the processesai(t,«) and f i(t,«) converge
weakly on a time interval of order 1/«2 to a diffuse Markov pro-
cessāi(t,«) andf̄ i(t,«) which is continuous w.p. 1, and satisfie
the Itô stochastic differential equation

dāi5«2mi~ ā!dt1«s̄ i j ~ ā!dWj , (35)

df̄ i5«2ni~ ā!dt1«m̄ i j ~ ā!dWj , (36)

where

mi~ ā!52d i āi1
1

16 H 3pii
2 āiS~2v i !1S pi j

2
ā j

2

āi
12pi j pji DS~v1!

1S pi j
2

ā j
2

āi
22pi j pji DS~v2!J ,

ni~ ā!5
1

8
$pii

2 āiC~2v i !1~pi j pji !C~v1!1~21! iC~v2!%,

~ s̄s̄T! i i 5
1

8
$pii

2 āi
2S~2v i !1pi j

2 ā j
2~S~v1!1S~v2!!%,

~ s̄s̄T! i j 5
1

8
$pi j pji āi ā j~S~v1!2S~v2!!%,

~m̄m̄T! i i 5
1

8 H pii
2 ~S~2v i !12S~0!!1pi j

2
ā j

2

āi
2 ~S~v1!1S~v2!!J ,

~m̄m̄T! i j 5
1

8
$pi j pji ~S~v1!1S~v2!!12pii pj j S~0!%.

One of the advantages of the above approximate Itoˆ equations
is that the amplitudesāi are decoupled from the phasesf̄ i and
they form a diffusive Markov process. To obtain the mome
Lyapunov exponent we transform the Itoˆ equations for the ampli-
tudes in terms of the norm,r 5ixi and an angleu using

ā15r cosu, ā25r sinu,

which results in

g~p;x0!5g~p;r 0! lim
t→`

1

t
log E@r p#. (37)

After some manipulation, the Itoˆ equations forr and the angleu
become

dr5«2n~u!rdt1«x j~u!rdWj , (38)

du5«2m~u!dt1«s j~u!dWj , (39)

where
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n~u!r 5mi~ ā!
]r

]āi
1

1

2
~ s̄s̄T! i j

]2r

]ai]ā j
, x j~u!r 5s̄ i j

]r

]āi
, (40)

m~u!5mi~ ā!
]u

]āi
1

1

2
~ s̄s̄T! i j

]2u

]āi]ā j
, s j~u!5s̄ i j

]u

]āi
, (41)

and the solutionr p(t;r 0) can be explicitly written as

r p~ t;r 0!5r 0
p expH pE

0

t

Q~u~s!!ds1pE
0

t

x j~u~s!!dWj~s!J ,

with

Q~u!5n~u!2
1

2
ux~u!u2.

Making use of the above solution, we can evaluate

E@r p~ t;r 0!#5r 0
pEFexpH Z~ t !1pE

0

t

Q~u~s!!ds

1
p2

2 E
0

t

ux~u~s!!u2dsJ G ,

where

Z~ t !5pE
0

t

x j~u~s!!dWj~s!2
p2

2 E
0

t

ux~u~s!!u2ds.

Now applying the Girsanov theorem yields

E@r p~ t;r 0!#5r 0
pEFexpH pE

0

t

Q~h~s!!ds

1
p2

2 E
0

t

ux~h~s!!u2dsJ G ,

where the expectation on the right-hand side of the above exp
sion is taken with respect to the measure associated with theˆ
equation

dh5«2@m~h!1pxT~h!s~h!#dt1«s j~h!dWj .

According to the Feynmann-Kac formula, the expectat
E@r p(t)#5c(h,p,t) is the solution of

S ]

]t
2@m~u!1pxT~u!s~u!#

]

]u

2
1

2
s2~u!

]2

]u22pQ~u!2
p2

2
ux~u!u2Dc50.

Making use of the results of Arnold@2# and Arnold et al.@4#, the
moment Lyapunov exponent is the largest eigenvalue of the
tionary operator

L̃~p!5L̃1pFxT~u!s~u!
]

]u
1Q~u!G1

p2

2
ux~u!u2,

where

uxu2r 25~ s̄s̄T! i j

]r

]āi

]r

]ā j
5Q̂~u!r 2,

usu25~ s̄s̄T! i j

]u

]āi

]u

]ā j
5s2~u!,

~xTs!r 5~ s̄s̄T! i j

]r

]āi

]u

]ā j
5m̂~u!r , Q~u!5n~u!2

1

2
ux~u!u2.

It is clear that the operatorL̃(p) obtained above is identical to th
one in Eq.~23!.
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4 Solution of the Eigenvalue Problem
Except for some special cases, the general solution of Eq.~23!

cannot be obtained explicitly forg2(p). In general, it is also pos-
sible to have singularities inu, thus some justification is needed i
order to ensure thatc~u! is bounded and positive. It is clear from
the form of the diffusion term that there may be singularities
the open interval~0,p/2!, i.e., when( i pii S(2v i)50, singularities
exist for p12p21.0 if S(v2)50 and cos 2u5(p122p21)/(p12

1p21), and for p12p21,0 if S(v1)50 and cos 2u5(p12
1p21)/(p122p21). Only the nonsingular cases will be considere
here.

In order to reduce the number of cases to be evaluated,
can simplify the coefficientspi j by a suitable scaling of the stat
variablesx. It can be shown that it is always possible to ta
p1256p215k, in which case the coefficients reduce to

A5
1

32H 4k2S~v6!2(
i 51

2

pii
2S~2v i !J , B50,

C5
1

32H 4k2S~v7!1(
i 51

2

pii
2S~2v i !J ,

D5
1

2
~L11L2!6

1

8
k2~S~v1!2S~v2!!,

E5
1

16
$p11

2 S~2v1!2p22
2 S~2v2!%,

F5
1

32H 4k2S~v6!1(
i 51

2

pii
2S~2v i !J ,

L5L12L2 , L i52d i1
1

8
pii

2S~2v i !, i 51,2,

wherev65v16v2 and in the above expressions the upper s
is taken whenp125p215k and the lower sign whenp1252p21
5k.

As in Wedig @11# and also in Bolotin@12#, the solution of Eq.
~23! can be calculated from an orthogonal expansion. The na
of the coefficients of the equation suggests that a Fourier serie
appropriate. Because of the zero Neumann boundary condit
we may expressc0 as a Fourier cosine series. Thus, inserting

c0~u!5(
n50

`

cn cos~2nu!

in Eq. ~23! leads to the following infinite set of equations:

(
m50

`

amncm5g~p!cn ,

where

amn5E
0

p/2

L̃~p!~cos~2mu!!cos~2nu!du, n50,1,2, . . . .

The existence of a nontrivial solution forcn requires that the
determinant of the coefficients equals zero. Thus to evaluateg(p),
the leading eigenvalue ofA5(amn), we construct a sequence o
approximations by finding the eigenvalues of a sequence of s
matrices:
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Fig. 1 Moment Lyapunov exponent for the general case S„2v1…Ä1, S„2v2…Ä2,
S„v1¿v2…Ä2, S„v1Àv2…Ä1, p 11Ä1, p 22Ä2, p 12Äp 21ÄkÄ1, d1Ä1, d2Ä2
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@a00#, Fa00 a01

a10 a11
G , F a00 a01 a02

a10 a11 a12

a20 a21 a22

G ,

¯F a00 a01 a02 ¯

a10 a11 a12 ¯

a20 a21 a22 ¯

a30 a31 a32 ¯

] ] ] �

G .

The set of approximate eigenvalues obtained by this proce
converges to the corresponding true eigenvalues asN→`. How-
ever, the amount of calculation increases drastically with the
crease in the number of terms considered. Here we presen
second-order submatrix for the general casesp125p215k and
p1252p215k, depending on whether the coupling is symmet
or skew-symmetric. All problems of the form given in Eq.~6! can
be rescaled to one of these two cases. The elements of this 23 2
submatrix are

a005
1

64
p~3p110!~p11

2 S~2v1!1p22
2 S~2v2!!

1
1

16
pk2~61p!S~v6!2p~d11d2!22g2~p!,
chanics
ure

in-
the

ic

a015
1

32
~p12!2~p11

2 S~2v1!2p22
2 S~2v2!!1

1

2
~d22d1!~p12!,

a105
1

64
pp11

2 ~5p114!S~2v1!1
1

64
pp22

2 ~61p!S~2v2!

1
1

16
pk2~61p!S~v6!2

3

2
pd12

1

2
pd222g2 ,

a115
3

256
p11

2 ~18p15p218!S~2v1!2
1

256
p22

2 ~10p1p2

140!S~2v2!1
1

64
k2~p112!~p22!S~v6!2pd1

2
1

2
k2S~v7!2g22d11d2 ,

where as before, the upper sign is taken whenp125p215k and
the lower sign whenp1252p215k. Now we consider some nu
merical results to illustrate the convergence of various orders
approximations. For this purpose consider the numerical va
S(2v1)51, S(2v2)52, S(v1)52, S(v2)51, p1151, p2252,
p1251, p2151, d151, d252 and S(2v1)51, S(2v2)52,
S(v1)52, S(v2)51, p1151, p2252, p1251, p21521, d151,
d252. Here we consider two sets of results up to fourth-ord
approximations and the numerical results for these two cases
given in Fig. 1 and Fig. 2. Here the first-order approximation
NOVEMBER 2001, Vol. 68 Õ 909
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Fig. 2 Moment Lyapunov exponent for the general case S„2v1…Ä1, S„2v2…Ä2,
S„v1¿v2…Ä2, S„v1Àv2…Ä1, p 11Ä1, p 22Ä2, p 12ÄÀp 21ÄkÄ1, d1Ä1, d2Ä2
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se
indicated by the symbol1while the other three approximation
virtually coincide. It is clear from these two cases that the four
order approximations are sufficient and the results conve
However, the second-order approximation gives an explicit
mula for g(p) which can provide some insight on the stabili
index. These figures also indicate that the oscillators may
almost-sure stable, since the slope ofg8(0) is negative, but un-
stable in thepth moment sense for sufficiently largep.

Now we shall consider some particular forms of excitati
spectrumsS(v) whose values are small every where exce
in a neighborhood of somev0 , i.e., the spectrum vanishes ou
side a bandwidthv02Dv0,v,v01Dv0 . In the following, we
shall consider the cases in whichv052v i , i 51, 2, v05v1
1v2 , andv05v12v2 . This can simplify the moment Lyapuno
exponents.

1 Coupled oscillators under band-limited noise excitation clo
to S(2v i), i 51, 2:

g2
1~p!5S 13

512
p21

21

256
p2

1

64D pii
2S~2v i !1S 2

1

2
~d11d2!p

1F S 129

262144
p41

193

65536
p31

31

8192
p1

381

65536
p2

1
1

4096D pii
4S~2v i !

22S p

64
~d12d2!~p12!2D pii

2S~2v i !

1
1

8
~d12d2!2p~p12!G1/2

5g2
2~p!.
MBER 2001
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t-
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2 Coupled oscillators under band-limited noise excitation clo
to S(v1):

g2
1~p!5S 3

128
p21

11

64
p2

3

16Dk2S~v1!2
1

2
~d11d2!p

1F S 1

128
p21

1

64
p1

3

16D
2

k4S~v1!2

1
1

8
~d12d2!2p~p12!G1/2

,

g2
2~p!52

1

2
~d11d2!p2

1

4
k2S~v1!

1
1

4
A2p~p12!~d12d2!21k4S~v1!2.

3 Coupled oscillators under band-limited noise excitation clo
to S(v2):

g2
1~p!52

1

2
~d11d2!p2

1

4
k2S~v2!

1
1

4
A2p~p12!~d12d2!21k4S~v2!2,
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g2
2~p!5S 3

128
p21

11

64
p2

3

16Dk2S~v2!2
1

2
~d11d2!p

1F S 1

128
p21

1

64
p1

3

16D
2

k4S~v2!2

1
1

8
~d12d2!2p~p12!G1/2

.

Once again the above expressions for the second-order app
mations ofg(p) provide insight as to the qualitative behavior
stability boundary with respect to the variation in the spec
density. For example, for thecoupled oscillators under band
limited noise excitation close to S(v1), the symmetric case
p125p215k provides a stability index and a stability bounda
while the skew-symmetric casep1252p215k has no stability
index ~g(p) is linear inp! and the system is always stable. Sim
larly for the coupled oscillators under band-limited noise excit
tion close to S(v2), the stability index and the stability boundar
exist for p1252p215k whereas forp125p215k the system is
always stable.

5 Application to Beams Under Stochastic Loads
Here we apply the general results of the above section in

context of real engineering applications and show how these
sults can be applied to physical problems. Two simple examp
which best illustrate the theoretical results, are presented h

Consider the flexural-torsional instability of a thin rectangul

Journal of Applied Mechanics
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ar

elastic beam of lengthL subjected to~i! stochastically fluctuating
end moments and~ii ! a stochastic follower force. It is assume
that the boundaries are simply supported and the end mom
M (t) and follower forceP(t) are applied as shown in Figs. 3~a!
and~b!. The motion of the beam is governed by the partial diffe
ential equations~Bolotin @12#!,

m
]2w

]t2 1dw

]w

]t
1EIx

]4w

]z4 50, (42)

m
]2u

]t2 1du

]u

]t
1EIy

]4u

]z4 1
]2~Mxf!

]z2 1PdS L

2
2zDf50,

(43)

mr2
]2f

]t2 1df

]f

]t
2GJ

]4f

]z4 1Mx

]2u

]z2 50, (44)

whereu(z,t), andw(z,t) denote thex, andy- components of the
deflection of the beam centerline andf is the angle of twist of the
cross section. The delta function isonly present in the follower
force case andMx in Eq. ~43! can be taken out of the differentia
in the case of fluctuating end moments. The quantitiesEIx , EIy ,
andGJ are the flexural and torsional rigidities of the cross sect
and dw , du , and df are the viscous damping coefficients.
addition,m denotes the mass per unit length andr is the radius of
gyration. In the follower force case, the functionMx can be ex-
pressed in terms of the applied stochastic load as
Fig. 3 Thin rectangular beam subjected to stochastic excitation
NOVEMBER 2001, Vol. 68 Õ 911
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Fig. 4 Almost-sure stability boundary for follower force and end moment cases
under real noise excitation, i.e., v1Ä0.5, v2Ä2, kÄ1, d1Ä.001, delta 2Ä.002, aÄ0.5
n

t

-
e

tic

ely,
Mx5H 1

2
Pz, 0<z<

L

2
,

1

2
P~L2z!,

L

2
<z<L

(45)

whereP5P(t), the stochastic follower force. The first equation
uncoupled from the other two and describes the ordinary rand
vibration of the beam in the plane of its largest rigidity with i
homogeneous boundary conditions given by

EIx

]2w

]z2 ~0,t !5EIx

]2w

]z2 ~L,t !52Mx52M ~ t !. (46)

The other two equations form a pair of coupled partial differen
equations with stochastic coefficientsMx5M (z,t) given by Eq.
~45! andP5P(t) in the follower force case andMx5M (t) in the
case of fluctuating end moments. For both the cases the two e
tions are subjected to homogeneous boundary conditions give

u~0,t !5u~L,t !5
]2u

]z2 ~0,t !5
]2u

]z2 ~L,t !50,

f~0,t !5f~L,t !50.

Consider the shape function sinpz/L which satisfies the bound
ary conditions. For the first mode of vibration, the displacem
u(z,t) and twistf(z,t) can be described by
EMBER 2001
is
om
-

ial

qua-
n by

nt

u~z,t !5rq1~ t !sinS p
z

L D , f~z,t !5q2~ t !sinS p
z

L D . (47)

Substituting these into the partial differential Eqs.~43! and ~44!
and considering appropriately the two cases yields

q̈11v1
2q112«2v1z1q̇11«j~ t !k12q250,

(48)
q̈21v2

2q212«2v2z2q̇21«j~ t !k21q150,

where

v1
25

p4

mL4 EIy , v2
25

p2

mr2L2 GJ, 2«2v1z15
du

m
,

2«2v2z25
df

mr2 , j~ t !5
P~ t !

Pcr
or

M ~ t !

Mcr
.

Here, P(t) and M (t) are assumed to be a stationary stochas
process andPcr and Mcr are the critical flutter load for the fol-
lower force and critical static buckling end moments, respectiv
and are given by

Pcr5
4uv1

22v2
2umLr

A~282p2!~41p2!
, Mcr5mrv1v2

L2

p2 .

By specifying a very thin beam, it follows thatv1
2!v2

2. For all
positive values ofz1 andz2 , the deterministic system of Eq.~48!
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Fig. 5 Moment Lyapunov exponent for the follower force problem with kÄ1, d1
Ä0.5, d2Ä1, S„v¿

…Ä1, S„vÀ
…Ä1
e

o
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nts,

the
is stable. We shall consider the stochastic problem with m
fluctuation levels much less than the critical loads.

For the follower force case

k125Pcr

1

2mLr S 72
p2

4 D5
1

2
A282p2

41p2 uv1
22v2

2u,

k2152Pcr

1

2mLr S 11
p2

4 D52
1

2
A 41p2

282p2 uv1
22v2

2u,

whereas for the end moment case

k125k215Mcr

1

mr S p

L D 2

5v1v2 .

Sinceki j 5pi j v j , scaling the coordinatesq1 andq2 as

q1→Av2~282p2!q1 , q2→Av1~41p2!q2

yields

q̈11v1
2q112«2v1z1q̇11«j~ t !v1kq250,

(49)
q̈21v2

2q212«2v2z2q̇21«j~ t !v2kq150,

where the lower sign corresponds to the follower force and
upper sign corresponds to the end moment force, with

k5H Av1v2, for the end moment force,

uv1
22v2

2u

2Av1v2

, for the follower force.
echanics
an

the

The second-order moment Lyapunov exponent is given by

g2~p!52
1

4
k2S~v7!1S 3

128
p21

11

64
p2

3

16Dk2S~v6!2
1

2
~d1

1d2!p1Fk4S 1

4
S~v7!1S 1

128
p21

1

64
p1

3

16DS~v6! D 2

1
1

8
~d12d2!2p~p12!G1/2

. (50)

In addition, the maximal Lyapunov exponent for these tw
problems can be easily obtained from Sri Namachchivaya and
Roessel@9# as

l52
~d11d2!

2
1

~d12d2!

2
cothF 4~d12d2!tan21SAS~v6!

S~v7!
D

k2AS~v6!S~v7!
G

6
k2

8
~S~v1!2S~v2!!, (51)

where, once again, lower and upper sign correspond to the b
with the stochastic follower force and stochastic end mome
respectively. We remark that it appears that the expressiong2(p)
given by Eq.~50! does not agree withl given by Eq.~51!. This
discrepancy is due to the fact that Eq.~51! is an exact solution of
the eigenvalue problem up toO(ee) while g28(0) given by Eq.
~50! is obtained by a sequence of approximate eigenvalues for
NOVEMBER 2001, Vol. 68 Õ 913
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e2 order eignenvalue problem~23!. Although the analytical ex-
pressions given by Eq.~50! and Eq.~51! do not agree, their nu-
merical values are in agreement.

Numerical results for the stability boundaries are obtained
both of these problems for the system parametersv150.5, v2
52.0, k51, d15.001, d25.002. The results presented in Fig.
are based on a real noise generated by a second order filter
tion and power spectral density given, respectively, as

j̈12aj̇1b2j5F~ t !, Sj~v!5
S0a2

~b22v2!214a2v2 .

The parameterS0 is the power spectral density of the white noi
process driving the filter equation. The peak intensity and
carrying frequency of the output processj(t), are determined by
the filter parametersa and b. In Fig. 4, the broken lines corre
spond to the end moment case while the solid lines represen
stability boundary for the follower force case and are calcula
for the filter parametera50.5. It is clear from the results that fo
the beam with follower force, if the noise excitation is close
S(v1), the system is stable even for large values of noise int
sity (S0,5), whereas the beam with stochastic end moment
stable for large values of noise intensity (S0,10) when the noise
excitation is close toS(v2). This stability behavior is very simi-
lar to the deterministic situation with periodic excitations whe
nonconservative systems with follower forces are always sta
when the forcing frequency is close tov1, and conservative sys
tems such as the beam with end moments are always stable
the forcing frequency is close tov2.

Figure 5 depicts the moment Lyapunov exponentg2(p) as a
function of p for the follower force problem discussed above.
can be verified in this figure that the maximal Lyapunov expon
l is the slope ofg2(p) at p50 and we compare the exact ordere2

result forl given in ~51! with the slope of the first four approxi
mations. Although the second-order approximations are not
accurate, the results seems to converge within four approxi
tions. Similar results can be obtained for the beam with stocha
end moments. It is important to note that forl,0, g(p) is positive
beyond large values ofp. This indicates that, although the re
sponse of the linear system decays to zero~with probability one!
at an exponential ratel, there is a small probability thatux(t;x0)u
is large. This would be the case if random oscillations cause
system response to exceed some threshold value as the me
sponse decays. This makes the expected value of this rare e
large for large values ofp and results in thepth mean instability.
914 Õ Vol. 68, NOVEMBER 2001
for

4
qua-

e
the

the
ted
r
to
en-

is

re
ble

hen

It
nt

hat
a-

stic

-

the
n re-
vent

In conclusion, we have obtained by two different methods
generatorL̃(p) given in Eq.~23! for which g2(p) is the principal
eigenvalue. Except for some special cases the general solutio
Eq. ~23! cannot be obtained explicitly forg2(p). In this paper we
have obtained certain approximate solutions based on Fou
analysis and it is shown that within four orders of approximati
we obtain qualitatively good results.
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Moving Loads on an Elastic
Half-Plane With Hysteretic
Damping
A closed-form solution is presented for the problem of a moving point load on an el
half-plane with hysteretic damping. The problem has been studied in order to inves
the dynamic amplification of stresses and displacements if the velocity of the loa
proaches the Rayleigh wave velocity or the shear wave velocity in the elastic me
This is relevant for the construction of high speed railway lines on relatively soft s
Hysteretic damping is introduced as pseudo-viscous damping, assuming that the da
in a full cycle of loading and unloading is independent of the frequency.
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1 Introduction
This paper presents an analytical solution of the problem o

vertical load moving at constant speed over the upper bounda
the half-planez.0. The material is isotropic linear elastic, wit
hysteretic damping to represent the energy dissipated by pl
deformations. The method used is a Fourier integral method~@1#!.
The solution is a generalization of the solution by Cole and H
@2# for the undamped elastic case, see also Eringen and Su
@3#, Frýba @4#, and the correction by Georgiadis and Barber@5#.

The purpose of the paper is to investigate the influence of h
teretic damping on the displacements and the stresses, as
expected that hysteretic damping may greatly reduce the l
stresses and strains near the critical velocity. Solutions for
undamped case indicate that very large displacements and str
occur for values of the velocity of the moving load in the vicini
or larger than the propagation speed of the Rayleigh wave, w
has been shown to be of great importance for the analysis o
effects of high speed trains on relatively soft soils by Dieterm
and Metrikine@6#. It has been suggested by Verruijt@7# that the
relatively large hysteretic damping which is characteristic for s
soils may lead to a considerable reduction of the peak stresse
peak displacements. This will be investigated in this paper for
case of plane strain deformations of a half-plane. It will app
that a simple closed-form solution can be obtained for the cas
a moving point load. Including hysteretic damping as an integ
part of the material behavior also appears to unify the limit
case of zero damping, as there is no need to distinguish betw
small and large velocities.

2 Hysteretic Damping
One of the basic principles of soil mechanics is that the de

mations of granular materials are not caused by deformation
the grains themselves, but are mainly caused by local rearra
ments of the granular structure, with grains slipping and roll
over each other. This is one of the basic notions behind Terzag
principle of effective stress~@8,9#!. Thus a large part of the soi
deformations is of an irreversible character, even though gr
may slide back into their previous position during unloadin
Analysis of the micromechanics of granular materials up to fail
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by Van Baars@10# has shown that one of the most importa
deformation mechanisms of a granular material is that in an
rangement of four particles the main force transfer chain chan
from horizontal to vertical, and back, see Fig. 1. Irreversible d
formations due to sliding occur in both the loading and the u
loading part of the cycle. A simple interpretation of the mech
nism shown in Fig. 1 is that the original assembly can only ca
a small vertical load, depending upon the lateral load and
friction in the inclined contact surfaces. If the vertical load
increased the assembly becomes unstable, and the top particle
be pushed through the two particles below it, until a horizon
contact plane is formed with the lower particle. From then on
large vertical force can be transmitted. If subsequently the vert
load is decreased or the horizontal load is increased, the asse
may revert to its original shape, again dissipating energy due
friction in the sliding of the grains.

Mechanisms such as the one illustrated in Fig. 1 are conside
to be responsible for the stress-strain behavior obtained in a cy
triaxial compression test on sand as shown in the left part of F
2, which has been obtained for a typical Dutch sand, from
river Meuse. The main features of the stress-strain behavior
evant to dynamic loads seem to be the stiffness and the damp
In order to describe these features an equivalent viscoela
model is introduced, with its shear behavior described by

t5Gg1Gtr ġ, (1)

where G is the shear modulus andt r is a retardation constant
representing the effect of the viscous damper.

The equivalent retardation constant for cyclic hysteretic def
mations as illustrated in Fig. 2 can be determined by compar
the dissipation of energy in a full cycle with the dissipation in
viscoelastic model, assuming a frequencyv. The dissipation of
energy is characterized by a damping ratioz ~@11#!, defined asz
51/2 sinc, wherec is defined by

tanc5vt r . (2)

Comparison of the dissipation of energy in the two models~@7#!
leads to an expression for the damping ratio of the form

6,
on

tment
nd

he
Fig. 1 A full cycle of deformations of a soil element
001 by ASME NOVEMBER 2001, Vol. 68 Õ 915
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Fig. 2 Cyclic triaxial test and its representation by a viscoelastic element
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t0

tmax
5

3

p2Agp

g0
, (3)

wheret0 is the amplitude of the cyclic shear stress,tmax is the
shear strength,gp is the plastic~irreversible! deformation in a full
cycle, andg0 is the amplitude of the cyclic deformation. In th
paper it will be assumed that the damping ratioz is a constant,
assuming that in the class of problems considered the ave
level of stress remains approximately constant. This is in ag
ment with the conclusion of Hardin@12#, on the basis of an ex
tensive experimental program, that a viscoelastic model can
used to describe the behavior of sand if the viscosity is assume
be inversely proportional to the frequency.

It follows from ~3! that the maximum value of the dampin
ratio is aboutzmax50.30, on theoretical grounds. This is ve
close to the maximum values reported by Hardin and Drnev
@13# from an extensive review of many laboratory tests. Realis
values for the damping ratios of soft soils seem to be of the o
of magnitude z50.1 or z50.2. These values correspond
tanc50.204 and tanc50.436.

It should be emphasized that for a classical viscoelastic mat
the damping ratio depends upon the frequency of the load
cycle, see Eq.~2!, so that the higher frequencies are damped m
strongly than lower frequencies. This is not a realistic descript
of the hysteretic damping of soils, however. For soils it can
expected that the damping will be about the same, whatever
frequency. In terms of a viscosity this means that the appa
viscosity is small for high frequencies, and large for small f
quencies, so that the productvt r remains constant.

A small hysteretic damping ratio~say z50.001! is sometimes
used in numerical solutions of dynamic problems in order to s
bilize the solution and avoid the singular behavior for certain cr
cal velocities~@14#!. Such solutions are sometimes referred to
viscoelastic, although strictly speaking that is not quite corre
because the frequency dependency of the viscous dampin
ignored.

It should be noted that the model used in this paper, wit
constant shear modulus and a constant damping ratio as its
characteristics, is only a first approximation of the behavior of r
soils. In reality soil behavior is known to be nonlinear, with t
shear modulus decreasing with the strain rate, for instance, an
damping ratio increasing with the strain rate. Such a complica
type of behavior can only be taken into account in a numer
model, however. The analytical approach used here can be us
a validation of numerical models, and may also give some us
insight in the type of behavior that can be expected in real so

3 Solution of the Problem
The problem to be considered refers to a viscoelastic half-p

z.0, loaded by a moving load on its surface. The materia
isotropic and linear viscoelastic, with hysteretic damping on
Hysteretic damping is defined as a special type of viscoela
damping, the special property being that the damping ratio in e
full cycle of loading is independent of the frequency of the loa
ing. The load may be a moving strip load or a moving point lo
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The basic equations are the equations of motion in plane-st
conditions for a linear viscoelastic material,

~l1m!S 11t r

]

]t D ]e

]x
1mS 11t r

]

]t D¹2u5r
]2u

]t2 , (4)

~l1m!S 11t r

]

]t D ]e

]z
1mS 11t r

]

]t D¹2w5r
]2w

]t2 , (5)

where u and w are the displacement components, ande is the
volume strain,e5]u/]x1]w/]z. The material properties are th
elastic coefficientsl andm and a relaxation timet r . For reasons
of simplicity the relaxation times for the two fundamental form
of deformation, shear and compression, have been taken equ
order to describe hysteretic damping the value oft r should be
inversely proportional to the frequency of the loading.

The Eqs.~4! and ~5! are the basic differential equations for
linearly viscoelastic material, with the parametert r being a mate-
rial constant. The generalization made in this paper is that
equations are assumed to be valid for any cyclic load, with cy
deformations, but that the value of the parametert r will be differ-
ent for different frequenciesv. Strictly speaking, it is assume
that the basic Eqs.~4! and~5! are valid only for a single frequency
of loading, and that for a different frequency of loading the val
of t r must be adjusted so thatvt r remains a constant. This wil
lead to a response to cyclic loads independent of the actual
quency, as is normally observed in cyclic testing of granular m
terials, and is obtained theoretically from the elastoplastic anal
of cyclic loads of soils. For each frequency a linear relation b
tween load and deformation is assumed, and in addition it is n
assumed that for a combination of two or more cyclic loads,
response will be the sum of the deformations. This enables a F
rier series approach to more general types of loading.

The problem to be considered is to determine stresses
displacements in the half-planez.0, subject to the boundary
conditions

z50: szx50, szz5E
0

`

F~a!cos@a~x2vt !#da, (6)

whereF(a) is a given real function of the positive real parame
a, andv is a given positive velocity. These boundary conditio
express that the upper surface of the half-plane is free of s
stress, and that a given distribution of normal stress is trave
along this surface at a constant velocityv, in positivex-direction.

The second boundary condition can also be written in the fo

z50: szz5RE
0

`

F~a!exp@ ia~x2vt !#da. (7)

A possible interpretation of this boundary condition is that it co
sists of a superposition of harmonic loads, of frequencyv5av.

For a moving strip of width 2b, F(a)52P sin(ab)/pab,
whereP is the amplitude of the total load. By letting the width o
the stripb→0 the case of a moving point load is obtained. In th
case the loading function is simplyF(a)52P/p. Although most
Transactions of the ASME
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of the derivations in this paper will be valid for an arbitrary loa
ing functionF(a), all examples will apply to the special case
a moving point load.

The general solution of the problem is expressed in terms of
horizontal and vertical displacementsu and w. These are repre
sented by the Fourier integrals,

u5RE
0

`

ū~a!exp@ ia~x2vt !#exp~2aaz!da, (8)

w5RE
0

`

w̄~a!exp@ ia~x2vt !#exp~2aaz!da, (9)

where the complex constanta is unknown in this stage. It is as
sumed that its real part is positive,R(a).0, so that the solution
will vanish for z→`. It is also assumed that the imaginary part
a is negative,J(a),0, so that waves will propagate in positiv
z-direction. This is theradiation condition, first formulated by
Rayleigh @15#. If we write a5p2 iq the solution will contain a
factor exp@ia(x1qz2vt)#, whereq must have a positive value, t
ensure that for a fixed value ofx the wave is propagated in pos
tive z-direction. The unknown functionsū(a) and w̄(a) will in
general be complex functions, involving the real and imagin
parts ofa.

Substitution of the expressions~8! and~9! into the basic differ-
ential Eqs.~4! and~5! now leads to the following system of equa
tions for the determination of the functionsū(a) andw̄(a),

~~m2a2!~122i z!2j2!ū1 i ~m21!~122i z!aw̄50, (10)

i ~m21!~122i z!aū1~~12ma2!~122i z!2j2!w̄50, (11)

where

m5
l12m

m
5

2~12n!

122n
5

cp
2

cs
2 , (12)

j25
rv2

m
5

v2

cs
2 , (13)

2z5vt r5avt r . (14)

Here cp and cs are the propagation velocities of compressi
waves and shear waves in the elastic material. In order to re
sent hysteretic damping the damping factorz will be considered to
be a given material constant. In terms of a viscoelastic mate
this would mean that the relaxation timet r is inversely propor-
tional to the frequencyv5av. It should be noted that in the
description of hysteretic damping a factor sign~v! is often in-
cluded in the definition~@16#!, so thatz is always positive. In this
paper a positive value ofz is ensured by restrictingv anda ~and
thusv! to positive values.

The symmetric system of Eqs.~10! and ~11! has a nonzero
solution only if the determinantD is zero,

D5m~12a2!2~122i z!22~m11!~12a2!~122i z!j21j450.
(15)

This leads to the possible roots

a1
2512

j2

122i z
, a2

2512
j2/m

122i z
. (16)

In order for the roots to represent finite waves traveling in posit
z-direction the real parts ofa1 and a2 must be positive, and the
imaginary parts must be negative. Thus if we write

a15p12 iq1 , a25p22 iq2 , (17)

then all these constants must be positive,

p1.0, q1.0, p2.0, q2.0. (18)

If z50 the squares of the roots are real,a1
2512j2 and a2

2

512j2/m, in agreement with the known results for the u
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damped case~@2#!. For small velocities the roots are real, and f
very large~supersonic! velocities both roots are imaginary.

Figure 3 shows the values of the real and imaginary parts of
root a1 , as a function of the dimensionless velocityj5v/cs and
the damping ratioz. It may be noted thata151 for j50 and all
values ofz, and thata150 for j51, z50. The value of the other
root a2 can be obtained from the value ofa1 by substitutingj/Am
for j, see~16!.

The precise definitions of the constantsp1 , q1 , p2 , andq2 are

p15R1 cos~u1!, q15R1 sin~u1!, (19)

p25R2 cos~u2!, q25R2 sin~u2!, (20)

whereR1 , R2 , u1 , andu2 are defined by

R1
45

~12j214z2!214z2j4

~114z2!2 , 2u15arctanS 2zj2

12j214z2D ,

(21)

R2
45

~12j2/m14z2!214z2j4/m2

~114z2!2 ,

2u25arctanS 2zj2/m

12j2/m14z2D . (22)

It is assumed that the angles 2u1 and 2u2 are restricted to the
intervals

0<2u1,p, 0<2u2,p. (23)

This ensures that the values ofp1 , q1 , p2 , and q2 are always
non-negative.

For each of the two solutions, characterized by the valuea
5a1 anda5a2 , a pair of the Fourier transformsū andw̄ can be
established so that the basic Eqs.~10! and ~11! are satisfied. Ad-
dition of these two solutions will lead to a general solution invo
ing two unknown constants, sayū1 and ū2 . These two constants
can be determined from the two boundary conditions~6!. The final
expressions for the Fourier transforms of the displacements
are found to be

Fig. 3 First root a1 as a function of j and z
NOVEMBER 2001, Vol. 68 Õ 917
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ū52
iF ~a!

ma~122i z!

2a1a2 exp~2a1az!2~11a1
2!exp~2a2az!

4a1a22~11a1
2!2 ,

(24)

w̄52
F~a!

ma~122i z!

2a2 exp~2a1az!2a2~11a1
2!exp~2a2az!

4a1a22~11a1
2!2 .

(25)

The determination of the actual displacement components req
evaluation of the Fourier integrals~8! and ~9!. Convergence of
these integrals depends upon the nature of the characteristic
tion F(a). When the resultant force of the load is nonzero t
integrals are singular, but even then the derivatives of the i
grals, needed for the evaluation of the stresses, may converg
course, the singular behavior of the displacements for problem
the elastic half-plane under the action of a given surface loa
well known~@17#!. It may also be noted that in the undamped ca
(z50) the denominator in the expressions~24! and ~25! will be
zero if the velocity equals the Rayleigh wave velocity, indicati
a singularity in the displacements. In the generalized dam
case, withz.0, there are no such singularities, although the d
placements may be very large if the damping ratio is small.

The Fourier transforms of the stresses are, using the tr
formed form of the constitutive relations,

sxx52F~a!

3
4a1a2 exp~2a1az!2~11a1

2!~12a1
212a2

2!exp~2a2az!

4a1a22~11a1
2!2 ,

(26)

szz5F~a!
4a1a2 exp~2a1az!2~11a1

2!2 exp~2a2az!

4a1a22~11a1
2!2 ,

(27)

sxz522ia2~11a1
2!F~a!

exp~2a1az!2exp~2a2az!

4a1a22~11a1
2!2 .

(28)

It can easily be verified that the shear stressszx and the normal
stressszz indeed satisfy the boundary conditions~6!.

4 Vertical Displacements for a Moving Point Load
One of the most interesting quantities is the vertical displa

ment w. The general solution for the Fourier transform of th
variable has been given in Eq.~25!. For the case of a moving
point load this gives, with~9! andF(a)52P/p,

w5
P

p
3RE

0

` 2a2 exp~2a1az!2a2~11a1
2!exp~2a2az!

ma~122i z!@4a1a22~11a1
2!2#

3exp@ ia~x2vt !#da. (29)

This integral does not converge, because of the factora in the
denominator of the integrand, indicating that the displaceme
are infinitely large. For practical purposes this difficulty can
eliminated by considering a differential displacementDw, defined
as

Dw~x,z!5w~x,z!2w~x1 l ,z!, (30)

where l is a given nonzero length. Substitution of~29! into ~30!
gives

Dw5
P

pm~114z2!
R$~A11 iB1!I 11~A21 iB2!I 2%, (31)

whereA1 , B1 , A2 , andB2 are real constants, defined by

A11 iB15
2~112i z!a2

4a1a22~11a1
2!2 , (32)
918 Õ Vol. 68, NOVEMBER 2001
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A21 iB252
~112i z!a2~11a1

2!

4a1a22~11a1
2!2 . (33)

and I 1 and I 2 are elementary Fourier integrals, defined by

I j5E
0

` exp@ ia~x2vt !#2exp@ ia~x1 l 2vt !#

a
exp~2ajaz!da,

(34)

where j 51 or j 52. These integrals can be evaluated using st
dard Laplace transform tables~@18#!, noting that the rootsaj can
be decomposed into real and imaginary parts byaj5pj2 iq j ,
with both constants being positive, see~18!. The result is

I j5Jj1 iK j , (35)

where

Jj5
1

2
logH ~pjz/ l !21@qjz/ l 1~x2vt !/ l 11#2

~pjz/ l !21@qjz/ l 1~x2vt !/ l #2 J , (36)

K j52arctanH pjz/ l

~pjz/ l !21Fqjz/ l 1~x2vt !/ l 1
1

2G2

2
1

4
J .

(37)

Substitution of~35! into ~31! finally gives

Dw5
P

pm~114z2!
@A1J12B1K11A2J22B2K2#. (38)

All that remains to be done for the construction of a graphi
representation of this function is to evaluate the real constantsA1 ,
B1 , A2 , and B2 from the definitions~32! and ~33!. This is a
simple matter of separation of the expressions in the right-h
sides of these equations into real and imaginary parts, using
definitions of the complex parametersa1 anda2 .

5 Examples
As a first example the vertical displacements in the field

shown in Fig. 4 for a practically undamped case (z50.001) and a
large ~supersonic! velocity (v/cs52). The figure indicates tha
two discontinuities are generated. The slopes of these two dis
tinuities are in agreement with the solution for the undamped c
by Cole and Huth~@2#!. Actually, in the undamped case the tw
discontinuities are given by (x2vt)52asz and (x2vt)
52apz, where forn50 andv/cs52: as5) andap51, which
is in excellent agreement with the slopes of the two discontinui
that can be observed in Fig. 4. For values of the damping r
smaller than 0.001 the results are found to be practically the sa
with the discontinuities becoming even sharper.

The influence of a larger damping ratio is illustrated in Fig.
in which the damping ratio has been increased toz50.1, and the
other parameters, Poisson’s ratio and the velocity of the mov
load, are the same as in Fig. 4. The two singularities can stil
observed, but their effect is less pronounced. For larger value
the damping ratio the results become gradually smoother. On
other hand, for supersonic velocities a small upward displacem
in front of the load may be observed. This may seem to b
surprising effect, but it occurs only if there is a considerab
amount of damping, and it has also been verified that the vert
velocity directly below the point load is always in downward d
rection, so that a positive amount of work is done.

For very small velocities the results will approach the classi
solution for a point load on an elastic half-plane~Flamant’s solu-
tion ~@17#!!. In the case of velocities close to the Rayleigh wa
Transactions of the ASME
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velocity the displacements become very large, and there
strong discontinuity just below the load, see Fig. 6. The veloc
in this case isv/cs50.874032, which is the velocity of Rayleig
waves in an elastic medium ifn50 ~@11#!. Note that in Fig. 6 the
scale of the displacements is a factor 50 different from the Fig
and 5, indicating that the displacements are indeed very m
Journal of Applied Mechanics
s a
ity

. 4
uch

larger for velocities near the Rayleigh wave velocity. By varyi
the value of the damping ratioz it has been found that the dis
placements are approximately inversely proportional toz, with the
displacements becoming infinitely large whenz→0. This is illus-
trated in Fig. 7, which shows the product of the damping ratioz
and the displacement differenceDw in the point x/ l 520.1,
Fig. 4 Moving point load, Dw, nÄ0.0, zÄ0.001, v Õc sÄ2.0

Fig. 5 Moving point load, Dw, nÄ0.0, zÄ0.1, v Õc sÄ2.0

Fig. 6 Moving point load, Dw, nÄ0.0, zÄ0.1, v Õc sÄ0.874032
NOVEMBER 2001, Vol. 68 Õ 919
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Fig. 7 Moving point load, Dw at Rayleigh wave velocity
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z/ l 50.01 as a function ofz, for various values of Poisson’s rati
n. It appears that for small values of the damping ratio this pr
uct is practically constant.

6 Vertical Normal Stress
Some more information on the character of the solution, and

influence of damping, may be obtained when considering
stresses. For the case of a moving point load the vertical nor
stresses are, with~27! and F(a)52P/p, and applying the in-
verse Fourier transform,

szz52
P

p
3RE

0

` 4a1a2 exp~2a1az!2~11a1
2!2 exp~2a2az!

4a1a22~11a1
2!2

3exp@ ia~x2vt !#da. (39)

Becausea1 anda2 are complex,a15p12 iq1 anda25p22 iq2 ,
this leads to integrals of the Laplace transform type, which
easily be evaluated. The result is

szz52
P

2pz H ~11C!p12D@q11~x2vt !/z#

p1
21@q11~x2vt !/z#2

1
~12C!p21D@q21~x2vt !/z#

p2
21@q21~x2vt !/z#2 J , (40)

whereC andD are real constants, defined by
MBER 2001
d-

the
the
mal

an

C1 iD 5
4a1a21~11a1

2!2

4a1a22~11a1
2!2 . (41)

Using these expressions the stress distribution can easily be
sented in numerical or graphical form.

A first example is shown in Fig. 8, which presents the verti
normal stresses forn50, z50.001 andv/cs52, the same data a
used for Fig. 4. The very large stresses along the two linesx
2vt)52asz and (x2vt)52apz confirm the propagation of
two shock waves, in agreement with the discontinuities in
displacement field.

The influence of the hysteretic damping on the magnitude of
stresses is shown in Fig. 9, in which the damping factor is a fa
100 larger,z50.1. In this figure the scale for the stresses is
factor 20 smaller than in Fig. 8, and the values in the figure the
selves are also much smaller. The results clearly show that
very large stresses for small values of the damping ratio are m
reduced if the damping ratio increases.

The maximum value of the vertical normal stressszz at a depth
z/ l 50.1 is shown, as a function of the velocity of the load, in F
10, for five values of the damping ratioz, and using the maximum
static value 2P/(pz) as a reference value. The influence of t
damping ratio is again found to be very large. For very sm
values of the damping ratio the results are not shown, as the
peaks would become very large, in agreement with the res
shown before, in Fig. 8.
Fig. 8 Moving point load, szz , nÄ0.0, zÄ0.001, v Õc sÄ2.0
Transactions of the ASME
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Fig. 9 Moving point load, szz , nÄ0.0, zÄ0.1, v Õc sÄ2.0

Fig. 10 Moving point load, Maximum vertical stress, nÄ0.3333
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7. Conclusions
It has been shown that a closed-form solution can be give

the problem of an elastic half-plane with hysteretic dampi
loaded by a moving load on its surface. A simple expression
be given for the stresses, which includes the static solution and
undamped dynamic solution as special cases. The solution
cates that for small values of the damping ratio, sayz,0.1, the
displacements and the stresses are very large, compared t
elastostatic solution. For small values of the damping ratio,
maximum displacements, which occur if the velocity of the lo
approaches the Rayleigh wave velocity, are found to be inver
proportional to the damping ratio. For relatively large values
the damping ratio~sayz.0.2! the displacements and stresses
of the same order of magnitude as in the elastostatic case.
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@18# Erdélyi, A., et al., 1954,Tables of Integral Transforms, Vol. 1, McGraw-Hill,

New York.
Transactions of the ASME



nular
set of
the
load
et of

n the
truc-
n can
hich
B. B. Guzina
Assistant Professor,

e-mail: guzina@wave.ce.umn.edu

F. Nintcheu Fata
Research Assistant,

e-mail: nint0004@tc.umn.edu

Department of Civil Engineering,
University of Minnesota,
500 Pillsbury Drive, SE

Minneapolis, MN 55455

Axial Vibration of a Padded
Annulus on a Semi-Infinite
Viscoelastic Medium
The vibratory punch problem for a viscoelastic half-space indented by a padded an
disk is investigated. By virtue of transform methods, the problem is formulated as a
triple integral equations which are reducible to a Fredholm integral equation of
second kind. In the formulation, the response of a thin buffer which regularizes the
transfer to the semi-infinite solid is approximated via a plane stress-type solution. A s
numerical results is included to demonstrate the effect of padding characteristics o
dynamic system response. Apart from providing an interpretation tool for the nondes
tive testing methods involving buffered annular loading systems, the present solutio
be used as an effective approximation to the corresponding rigid-punch problem w
has so far eluded a rigorous mathematical treatment.@DOI: 10.1115/1.1410098#
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1 Introduction
Dynamic interaction of an annular disk with a semi-infini

solid has been a subject of fundamental interest in applied
chanics over the past few decades because of its importance t
seismic analysis and design of structures such as cooling tow
radar stations, and liquid containment tanks. For this class
problems, the early treatments date back to El-Shafee and G
@1# and Tassoulas and Kausel@2# who independently employed
finite element method coupled with a semi-analytic transmitt
boundary to represent the radial wave propagation in a suppo
elastic medium. A further insight into the nature of the proble
was provided by Veletsos and Tang@3,4# via a direct boundary
element solution for the vibrations of a rigid ring on a unifor
elastic half-space, and Rajapakse@5# who examined the time-
harmonic load transfer between a flexible annular plate an
semi-infinite viscoelastic solid using a variational principle. O
ing to the complexity of the triple-integral equation systems t
are intimately involved in the analytical solutions for ring-shap
contact geometries~@6#!, however, dynamic interplay of an annu
lar disk with a solid half-space has so far evaded a rigorous tr
ment that is attainable for the corresponding circular foot
problem~@7–10#!.

In the context of nondestructive testing, the subject of dyna
annulus-half-space interaction is also relevant to the prolifera
class of site and material characterization techniques base
stress waves emanating from a ring-shaped loading disk~@11,12#!.
Owing in part to a thin rubber padding, often attached to
bottom of the source plate~@13#!, the near-field waveforms stem
ming from such loading systems are commonly interpreted on
basis of the uniform contact-pressure assumption for the loa
area. Several elastostatic investigations concerned with the su
~e.g., @14#!, however, indicate that the neglect of site-loadi
system interaction may be inappropriate for certain fi
configurations.

To provide a rational basis for quantifying near-field effects
source characteristics in nondestructive site and material cha
terization by wave methods, the focus of this communication

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
2000; final revision, June 12, 2001. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the harmonic response of a padded annular footing vibrating
tically on a uniform viscoelastic semi-infinite solid. Formulated
terms of a set of triple integral equations, the problem is redu
to a single Fredholm integral equation of the second kind whic
amenable to an effective computational treatment. Numerical
sults are included to highlight several key aspects of the phys
problem. Beyond serving as a tool for the consistent interpreta
of dynamic field tests performed on profiles that are nearly u
form to a sufficient depth, the analysis developed provides
basis for extensions of the methodology to more general, mu
layered systems.

2 Problem Formulation
Consider the axial vibration of a padded annular footing

internal radiusa0 and external radiusa resting on a homogeneou
isotropic viscoelastic half-space~see Fig. 1!. The vibrating foun-
dation is a system consisting of a massless rigid annulus unde
by a thin elastic body of thicknessh, shear modulusmP , Pois-
son’s rationP , and mass densityrP . The rigid disk is subjected
to a time-harmonic vertical displacementDeivt where v is the
circular frequency of vibration. The sides of the footing and t
surface of the half-space outside the contact area are fre
stresses, with the axial displacements and normal stresses b
continuous across both terminal sections of the buffer. With re
ence to the cylindrical coordinate system (r ,u,z) set at the center
of the padding’s bottom contact area, the semi-infinite solidz
.0) is characterized by the shear modulusm, Poisson’s ration,
mass densityr, and the damping ratios

jp[
1

4p

DWp

Wp
, js[

1

4p

DWs

Ws
, (1)

for compressional and shear waves, respectively. In~1!, DWq(q
5p,s) is the amount of energy dissipated per cycle of harmo
excitation in a representative volume, whileWq is the peak strain
energy stored in the same volume of a solid subjected to comp
sional~p! or shear~s! body waves. In this investigation,jp andjs
are assumed to be frequency-independent which correspond
the case of hysteretic damping which offers a reasonable app
mation of dissipative mechanisms in many frictional materi
such as soils and rocks~@15#!.

2.1 Response of Elastic Padding. To facilitate the solution
to the load-transfer problem illustrated in Fig. 1, it will be a
sumed in the sequel that~i! the contacts between the rigid annulu
elastic buffer, and the half-space are frictionless, and~ii ! the thick-
ness of the padding is sufficiently small so that
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h!a, h!
2p

v
AmP

rP
, h!

F/D

p~a22a0
2!v2rP

, (2)

for the range of frequencies of interest whereF is the resultant
interfacial force between the padding and the top disk. Physica
~2b! postulates that the shear wave length in the pad significa
exceeds its thickness, while~2c! implies that the mass of the
buffer has a negligible effect on the overall system response.
der such hypotheses, the shear stress components rz

pad in the pad-
ding can be neglected and the variation of the axisymmetric st
field within the buffer can be approximated via aplane stress-
type, i.e., depth-independent representation

s jk
pad~r ,z,t !5d jkŝ jk

pad~r !eivt, j ,k5r ,u,z,
2h,z,0
a0,r ,a, (3)

where d jk denotes the Kronecker delta with no summation im
plied. On the basis of~3!, the equilibrium equations governing th
response of an annular padding reduce to

]ŝ rr
pad

]r
1

ŝ rr
pad2ŝuu

pad

r
50,

2h,z,0,
a0,r ,a, (4)

in the absence of inertial body forces which are, consistent w
~2c!, assumed to be insignificant relative to the stresses trans
ted through the buffer. By means of the generalized Hooke’s
for an isotropic solid and the compatibility conditions,~4! can be
rewritten as

]

]r S 1

r

]

]r
~rûr

pad! D52
nP

2mP

dŝzz
pad

dr
,

2h,z,0,
a0,r ,a, (5)

whereur
pad(r ,z,t)5ûr

pad(r ,z)eivt denotes the radial displacemen
in the padding. If the normal stressŝzz

pad is further assumed to be
known, ~5! can be solved for the radial displacement field as

ûr
pad~r ,z!5

r

2
C1~z!1

1

r
C2~z!

2
nP

2mP

1

r Ea0

t

tŝzz
pad~t!dt,

2h,z,0,
a0,r ,a, (6)

Fig. 1 Padded annulus on a uniform viscoelastic half-space
f
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whereC1 andC2 are the constants of integration to be determin
from the boundary conditions. To such end, one may invoke~3!
and the requirement that the sides of the padding are stress-
that is

ŝ rr
pad~a0!50, ŝ rr

pad~a!50, (7)

which yields the depth-invariant parameters

C15
2nP~12nP!

mP~11nP!~a22a0
2!
E

a0

a

tŝzz
pad~t!dt,

C25
2nPa0

2

2mP~a22a0
2!
E

a0

a

tŝzz
pad~t!dt. (8)

By virtue of ~6! and ~8!, the axial strain in the padding can b
shown to admit the representation«zz

pad(r ,z,t)5 «̂zz
pad(r )eivt where

«̂zz
pad~r !5

122nP

2mP~12nP!
ŝzz

pad2
nP

12nP

1

r

d

dr
~rûr

pad![aŝzz
pad~r !1b,

(9)

with the parameters

a5
12nP

2mP
, b5

nP
2

mP~11nP!~a22a0
2!
E

a0

a

tŝzz
pad~t!dt,

(10)

dependent on the properties of the buffer as well as the ave
normal stress transmitted through the padding. It is of interes
note that upon neglecting the Poisson’s effects in the padding
setting nP50, ~9! reduces to the familiar one-dimensional rel
tionship «̂zz

pad5ŝzz
pad/EP where EP denotes the buffer’s Young’s

modulus.

2.2 Normal Load on a Half-Space. For a general represen
tation of the response of a lossy semi-infinite solid to tim
harmonic excitation, it is convenient to employ the correspo
dence principle@16# which states that the damped solution in t
frequency domain may be obtained from the elastic one by rep
ing the featured elastic constants with the corresponding com
moduli. By virtue of~1! and dissipation analysis in Findley et a
@17#, the complex shear modulus and the Poisson’s ratio for
half-space outlined in Fig. 1 can be written, respectively, as

m* 5m~112i js /A124js
2!,

n*

5
~12n!~112i jp /A124jp

2!2~122n!~112i js /A124js
2!

2~12n!~112i jp /A124jp
2!2~122n!~112i js /A124js

2!
.

(11)

In dealing with the media with less pronounced intrinsic dissip
tion so thatjp!1 andjs!1, the square-root terms in~11! may be
dropped leading to the commonly used expressions for the c
plex isotropic viscoelastic moduli~e.g.,@5#!.

For the time-harmonic problem of interest, cylindrical comp
nents of the displacement and stress fields in the half-space ca
conveniently expressed as
uj~r ,z,t !5û j~r ,z!eivt[aūj~ r̄ ,z̄!eivt,
s jk~r ,z,t !5ŝ jk~r ,z!eivt[m* s̄ jk~ r̄ ,z̄!eivt, r̄[

r

a
>0, z̄[

z

a
.0, (12)
respectively, wherej ,k5r ,u,z. With such definitions, it can be
shown by means of~11! and the elastodynamic solution in Pa
@18# that the vertical displacement on the surface of a homo
neous viscoelastic half-space due to an arbitrary normal sur
load ŝzz(r ,0) permits the integral representation
k
ge-
ace

ūz~ r̄ ,0!5E
0

`

V~z!R̃0~z!J0~ r̄ z!dz, (13)

whereJ0 denotes the Bessel function of order zero, and
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R̃0~z!5E
0

`

r̄ s̄zz~ r̄ ,0!J0~ r̄ z!dr̄, (14)

is the zeroth-order Hankel transform of the normalized surf
traction s̄zz. In ~13!,

V~z!5
k̄s

2zAz22 k̄p
2

~2z22 k̄s
2!224z2Az22 k̄p

2Az22 k̄s
2

, (15)

where

k̄s5avA r

m*
, k̄p5A122n*

222n*
k̄s (16)

denote the dimensionless shear and compressional wave num
in the half-space, respectively.

3 Mathematical Analysis of the Annular Load Trans-
fer

On account of the premises and results derived in Section 2
boundary conditions for the elastic buffer that are relevant to
interaction problem can be expressed as

ûz
pad~r ,2~h2!!5D,

ûz
pad~r ,02!5ûz~r ,01!, a0,r ,a, (17)

ŝzz
pad~r !5ŝzz~r ,01!,

whereûz and ŝzz denote the axial displacement and stress in
half-space as examined earlier, and~17c! synthesizes the norma
stress conditions on both terminal sections of the padding.
virtue of ~9!, ~17!, and the frictionless contact assumption, t
boundary conditions on the surface of the semi-infinite medi
can be written as

ûz~r ,0!5D1~aŝzz~r ,0!1b!h, a0<r<a,

ŝzz~r ,0!50, r ,a0 , r .a, (18)

ŝzr~r ,0!50, r>0,

with the superscript ‘‘1’’ dropped in view of the continuity ofûz
and ŝzz in the half-space.

On the basis of~13!, ~14! and the theory of Hankel transforms
mixed boundary conditions~18! constituting the load-transfe
problem can be conveniently recast in a dimensionless form
set of triple integral equations

E
0

`F12
aV~z!

ahm* zGzR̃0~z!J0~ r̄ z!dz52
D1bh

ahm*
,

a0

a
< r̄<1,

E
0

`

zR̃0~z!J0~ r̄ z!dz50, 0< r̄ ,
a0

a
, (19)

E
0

`

zR̃0~z!J0~ r̄ z!dz50, r̄ .1,

for the transformed contact stressR̃0. Here, the first equation
asserts the continuity of axial displacements across the ann
contact area, while the latter two equalities maintain zero nor
tractions on the half-space outside the loaded zone.

3.1 Reduction of Triple Integral Equations. The treatment
of the governing triplet of integral equations can be facilitated
introducing an auxiliary functionF( r̄ ) such that

2
D1bh

ahm*
F~ r̄ !5E

0

`

zR̃0~z!J0~ r̄ z!dz, r̄>0, (20)
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whereb is a functional of the contact stressŝzz(r ,0) as given by
~10b! and ~17c!. With the aid of ~19! and the Hankel inversion
theorem,~20! can be reversed via

R̃0~z!52
D1bh

ahm* E
a0 /a

1

tF~t!J0~tz!dt, z>0. (21)

By virtue of ~10a!, ~20!, and~21!, it can be shown that the system
of triple integral Eq.~19! leads to a Fredholm integral equation
the second kind

F~ r̄ !2LE
a0 /a

1

K~ r̄ ,t!F~t!dt51,
a0

a
< r̄<1, (22)

where

L5
2

12nP

amP

hm*
, (23)

denotes the Fredholm integral parameter, and

K~ r̄ ,t!5tE
0

`

V~z!J0~ r̄ z!J0~tz!dz,
a0

a
< r̄ ,t<1. (24)

To expose the physical meaning ofL, it is useful to recall~i! the
one-dimensional axial stiffness of a solid cylindrical colum
(a0 /a50) with Young’s modulusEP52mP(11nP) and heighth
which is given bySP5EP(pa2)/h, and ~ii ! the normal stiffness
S54ma/(12n) of an elastic half-space with shear modulusm
and Poisson’s ration under the action of a rigid circular punch o
radiusa ~@19#!. With such definitions, Fredholm integral param
eter ~23! can be recast as

L5
SP

S H 4A124js
2

p~12n!~12nP
2 !~A124js

212i js!
J , (25)

which clearly identifiesL as a stiffness ratio between the paddi
and the half-space.

For an in-depth study of the load-transfer problem, it is use
to observe the asymptotic behavior of~15! given by

lim
z→`

V~z!5n* 21, (26)

which, combined with the respective asymptotic expansions
Bessel functions in~24!, reveals a logarithmic singularity of the
kernel K( r̄ ,t) in the limit as u r̄ 2tu→0. To pursue a rigorous
solution to ~22! under such circumstances, it is useful to extra
the singular part of the Fredholm kernel and integrate it in clo
form so that

K~ r̄ ,t!5~n* 21!
2t

p~ r̄ 1t!
F0S 4r̄ t

~ r̄ 1t!2D1tE
0

`

$V~z!

2~n* 21!%J0~ r̄ z!J0~tz!dz,
a0

a
< r̄ ,t<1, (27)

whereF0 denotes the complete elliptic integral of the first kin
~@20#!. One may observe that the remaining integral in~27! is now
regular, thus being amenable to numerical evaluation via suita
truncation of the integration interval.

On account of~12b!, ~14!, and~20!, the contact stress distribu
tion between the annular buffer and the half-space can be ev
ated directly in terms of the solution to the Fredholm integ
equation via

ŝzz~r ,0!5gFS r

aD , g52
D1bh

ah
, r>0, (28)
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which implies thatF( r̄ ) has a physical meaning of the normalize
contact load. A careful examination of~10! and ~28! also reveals
that g depends on the mean value ofF over the contact area
through the relationship

b5
DnPf

h~a2nP~a1f!!
,

f5
2nP~12nP!a2

mP~11nP!~a22a0
2!
E

a0 /a

1

tF~t!dt. (29)

It is important to note thatF andf do not depend on the vibratio
amplitudeD, thus rendering the linearity of the solution in~28!
explicit.

To cater for engineering applications where the induced sur
deflections are often used as an input to the back-calculatio
ground properties, integral representation of the vertical displa
ment ûz(r ,0) on the surface of a semi-infinite solid due to a bu
ered annular punch can be derived from~12a!, ~13!, and ~21! in
the form of

ûz~r ,0!5
ag

m* Ea0 /a

1

L~ r̄ ,t!F~t!dt, r>0, (30)

where

L~ r̄ ,t!5tE
0

`

V~z!J0~ r̄ z!J0~tz!dz, r̄>0,
a0

a
<t<1.

(31)

As can be seen from~24! and ~31!, L( r̄ ,t) is thecontinuationof
K( r̄ ,t) over the strip@0,1`)3@a0 /a,1# which indicates that the
asymptotic decomposition~27! can be employed for the evalua
tion of L( r̄ ,t) as well.

4 Computational Treatment
For numerical purposes, the solution to the Fredholm integ

Eq. ~22! is sought via the collocation method with linear interp
lation functions. To effectively deal with possible stress conc
trations along the edges of the annular contact area, an o
ended discretization scheme

a0

a
, r̄ 1, r̄ 2,¯, r̄ n21, r̄ n,1, (32)

is selected wherer̄ j ( j 51,2, . . .n) denotes the radial coordinat
of the j th collocation point. Upon introducing the set of auxilia
constants vias15a0 /a, sk5 r̄ k(1,k,n), andsn51, an approxi-
mate solution to the Fredholm integral equation can be expre
as

F̃~ r̄ !5(
j 51

n

F jc j~ r̄ !,
a0

a
< r̄<1 (33)

whereF j[F̃( r̄ j ), and

ck~ r̄ !5H~ r̄ 2sk21!H~ r̄ k2 r̄ !
r̄ 2 r̄ k21

r̄ k2 r̄ k21
1H~ r̄ 2 r̄ k!

3H~sk112 r̄ !
r̄ k112 r̄

r̄ k112 r̄ k
,

k52,3, . . .n21,

c1~ r̄ !5H~ r̄ 2s1!H~ r̄ 22 r̄ !
r̄ 22 r̄

r̄ 22 r̄ 1
,

cn5H~ r̄ 2 r̄ n21!H~sn2 r̄ !
r̄ 2 r̄ n21

r̄ n2 r̄ n21
, (34)
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with H denoting the Heaviside function. On the basis of~33!, the
governing integral Eq.~22! can be converted into a system o
linear algebraic equations

(
j 51

n S d i j 2LE
a0 /a

1

K~ r̄ i ,t!c j~t!dt DF j51, i 51,2, . . . ,n,

(35)

for the nodal valuesF j . Here,d i j denotes the Kronecker delta,L
is given by~23!, andK stands for the Fredholm kernel functio
evaluated via~27!.

Apart from revealing the contact stress distribution between
padding and the semi-infinite solid through~28! and ~33!, the
nodal valuesF j of the piecewise-linear approximation can also
used as a basis for evaluation of the surface deflections in a
space via

ûz~r ,0!5
ag

m* (
j 51

n

F jE
a0 /a

1

L~ r̄ ,t!c j~t!dt, r>0, (36)

with L( r̄ ,t) given by ~31!.

5 Results
By means of the foregoing mathematical analysis and com

tational scheme, the dynamic response of a half-space due
padded annular punch can be evaluated numerically. In what
lows, a set of illustrative results is presented with the typical v
ues ofa0 /a taken as 0.1 and 0.8 to provide benchmarks for
existing nondestructive testing configurations~@11,12#!. To bring
the results into a self-similar format, the dimensionless freque
is taken as

v̄5vaAr

m
. (37)

In Fig. 2, the static contact stress distribution between the p
ded annulus witha0 /a50.1 and an elastic half-space is plotte
for several values of the stiffness ratioL. From the display
whereinp denotes the average contact stress, it is apparent tha
stress distribution varies from being nearly uniform to having p
nounced edge concentrations with the increasing stiffness rati
close agreement between the result forL5105 and the static ana-
lytical solution for the rigid annulus~@21#! should also be
observed.

The next example illustrates the dynamic response of a m
less rigid ring witha0 /a50.8 vibrating on a semi-infinite solid
with n51/3. The resulting dynamic compliance

Cvv~v!5
D

F
, F522pE

a0

a

r ŝzz~r ,0!dr, (38)

whereF denotes the resultant contact load is plotted in Fig. 3
the respective cases of zero and nonzero damping. In the fig
the action of a rigid annulus is simulated by assuminguLu51010

Fig. 2 Static contact stress distribution: effect of padding
stiffness
Transactions of the ASME
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Fig. 3 Vertical dynamic compliance of a rigid annulus

Fig. 4 Center deflection under vibratory annular punch

Fig. 5 Surface deflection of a half-space: effect of padding
stiffness

Fig. 6 In-phase components of the surface motion
Journal of Applied Mechanics
for the composite model, showing a reasonable agreement
the elastodynamic boundary element solution in Veletsos and T
@4#.

Figure 4 highlights the effects of the padded annulus-half-sp
interaction on the amplitude of axial surface displacements~30!
with uLu530 denoting a value commonly encountered in dynam
site characterization. From the display, it is evident that the u
form contact-pressure assumption which is normally employed
interpret the field data may lead to significant errors in the ana
sis of dynamic center deflections for moderate to high values oL.
For engineering purposes, the interaction effects are further
thesized in Fig. 5 where the amplitude of the center deflect
ûz(0,0) atv̄51 as forecast by~30! is normalized by the approxi-
mate predictionûz8(0,0) which assumes theuniformcontact stress
distribution

ŝzz8 ~r ,0!5
2

~a22a0
2!
E

a0

a

tŝzz~t,0!dt5const., a0<r<a,

(39)

between the annulus and the half-space. As expected, an
introduced by the uniform contact-stress assumption ampli
with diminishing ratioa0 /a and increasingL. It should also be
noted thatv̄51 corresponds to a vibration frequency of appro
mately 100 Hz in a typical field test of an unpaved subgra
From numerical simulations, it was found that the interaction
fects generally become more pronounced with increasingv̄.

To provide a more complete picture of the dynamic half-spa
response, Figs. 6 and 7 show the variation of the respective
and imaginary components of the vertical surface displacem
ûz(r ,0) at several frequencies of interest. A direct comparison
the in and out-of-phase profiles atv̄51 with Fig. 4 further reveals
that the deflection amplitude profile, notwithstanding its usef
ness as a tool for engineering interpretations, does not cle
convey the dynamic nature of the problem.

6 Summary
In this communication, a mathematical model is presented

the axial vibration of a padded annulus on the surface of a ho
geneous viscoelastic half-space. By virtue of the Hankel integ
transform, the problem is formulated as a set of triple integ
equations which are reducible to a Fredholm integral equation
the second kind. In the formulation, the padding is assumed
furnish a one-dimensional load transfer from the rigid annulus
an underlying half-space via a plane stress-type hypothesis.
shown that the contact stress between the padded annulus an
supporting semi-infinite medium may deviate significantly fro
the uniform pressure distribution commonly assumed in the in
pretation of dynamic field measurements involving buffered an
lar loading systems. Beyond providing an in-depth understand
of the mechanics of the composite annulus-half-space interac
the proposed dynamic solution can also be used as an effe
approximation to the corresponding rigid-punch problem

Fig. 7 Out-of-phase components of the surface motion
NOVEMBER 2001, Vol. 68 Õ 927



o

e

u

n

V

S

of

ive
nt,’’
on,

y-
nular
on,

for
l.

ing
TM

y a

a

,’’
da-
,

which the analytical solution is currently unavailable. With the a
of Fourier or Laplace transforms, the method can be readily
tended to deal with transient problems.
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Nonintrinsicity of References in
Rigid-Body Motions
This paper shows that in the use of Lie groups for the study of the relative motion of
bodies some assumptions are not explicitly stated. A commutation diagram is s
which points out the ‘‘reference problem’’ and its simplification to the usual Lie gro
approach under certain conditions which are made explicit.@DOI: 10.1115/1.1409937#
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1 Introduction
There are two main ways to describe rigid bodies motio

screw theory based on the original work of Ball@1# and then used
by Lipkin @2–4# and Lie groups theory~@5,6#!, which is used for
kinematics in@7#. These two have been recently formally relat
in @8#. The reader is also addressed to the excellent book~@9#!
where among others, screw systems are related to Lie subalge

In the Lie group approach, the basic starting point is the iso
etry groupSE(3) of the Euclidean three-dimensional space wh
can be used to describe motions. Here, withSE(3) it is NOT
meant the set of homogeneous matrices which are commonly
in robotics, but the abstract Lie group of positive isometries of
Euclidean space.

In this setting, twists are seen as elements of the Lie alge
se(3) which correspond to the Lie groupSE(3). Wrenches are
instead defined as elements of the dual ofSE(3) which is indi-
cated asse* (3). Unfortunately, in this approach, the position of
rigid body is identified by an element ofSE(3) after a reference
position for the body has been chosen the choice of which is N
intrinsic. Furthermore, almost everywhere, a framework with
ordinates is used where usually the notationSE(3) is NOT used
for the abstract Lie group of positive isometries of the three
mensional space, but instead for the set of Lie group of homo
neous matrices of the form

S R p

0 1D
whereR is an orthonormal matrix representing a rotation andp a
translation vector, from the very start. This happens also in
excellent book of Murray et al.@7# and hides simple but importan
hypotheses which are clear in a coordinate free framew
instead.

Only in @10,11# is the importance and necessity of a NOT i
trinsic reference presented.

In this article we try to make all the assumptions explicit
order to built a clear and formally correct framework. After
coordinate-free treatment, coordinates will be added and exp
assumptions will be made. This article is of a fundamental na
and therefore suited for a mathematical-oriented reader.

For more general treatments on kinematic issues, the read
addressed to@12# and @9#. For a very nice treatment and classi
cation using Lie groups of motions, the reader is addres
to @13#.

In Section 2 the basic definitions are reported. In Section 3
definition of twists is reported and a commutation diagram

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1
2000; final revision, Apr. 25, 2001. Editor: R. C. Benson. Discussion on the p
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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shown which explains the basic contribution of this paper. In S
tion 4 the hypothesis which bring to the standard Lie groups
announced.

2 Euclidean Systems and Configurations
The concept of an observer is very important and is coupled

the concept of space: an observer is identified with a Euclid
space in which he is rigidly connected together with all tho
objects which are always stationary in relation to him. A set
objects which are never changing position in relation to one
other can be considered as a single entity from a kinematic p
of view.

For these reasons and for more formal ones that should bec
clear in the sequel, we consider as many Euclidean spaces as
are bodies moving relative to one another. An object will be
subset of a Euclidean space together with a mass density fun
which associates a value to each of the body’s points. The m
density function is relevant for dynamic considerations. For kin
matic considerations, it is sufficient to define a proper bodyBi as
a subset of a Euclidean spaceEi instead.

Once we have defined the geometry of bodies and spaces
can introduce time as an absolute1 scalar variable.

We can start by giving a formal definition of an Euclidea
space:

DEFINITION 1. ~Euclidean Space! An n-dimensional Euclidean
Space Ei is a triple (Mi ,gi ,V i) where (Mi ,gi) is an
n-dimensional manifold with Riemannian metric gi which is iso-
metric toRn with Riemannian metriĉ,&, whose matrix in standard
coordinates(x1 , . . . ,xn) is d i , j . In other words there is a diffeo-
morphismw:Mi→Rn such thatw* ^,&5gi . V i is a nonzero vol-
ume n-form on Mi and v is dx1∧ . . . ∧dxn . It is also assumed
that w is orientation preserving, that is, w* v5V i .

We can now define what we will call a Euclidean system.

DEFINITION 2. ~Euclidean System! The ordered set of m
n-dimensional Euclidean oriented manifolds:

Sm~n!ª$E1 ,E2 , . . . ,Em%

is called aEuclidean system of dimensionn and orderm. We use
the Euclidean system as the basic structure to consider rela
motions. All the material which will be treated will be general an
applicable ton dimensions. Clearly in three-dimensional mecha
ics, we will haven53. The numberm corresponds to the numbe
of objects and/or observers we consider in our study of motio

To understand the concepts intuitively, we consider the tw
dimensional Euclidean systemS3(2) of Fig. 1. We use a two-
dimensional example for simplicity and to illustrate some co
cepts which will be introduced later. We can consider each of
Euclidean spaces as sheets of paper of infinite extension w

9,
per
Me-
be
E

1The fact that we will consider time as an absolute is a consequence of
classical separation in mechanics of space and time, which is due to the Ga
hypothesis.
001 by ASME NOVEMBER 2001, Vol. 68 Õ 929
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can be placed on one another. In the figures, the sheets are d
as finite rectangles for the sake of clarity, but should be though
as having an infinite extension.

The following definition is necessary to understand relat
positions:

DEFINITION 3. ~Positive Isometry! A positive (or orientation
preserving) isometry hi

j :Ei→Ej is a diffeomorphism such tha
(hi

j )* gj5gi and (hi
j )* V j5V i . The set of all such isometries i

indicated with SEi
j (n) when iÞ j and SEi(n) when i5 j .

Two considerations are now important.
First of all, the setSEi(n) corresponds to the set of positiv

isometries of a Euclidean space which is usually indicated
SE(n). The extra index is used to discriminate between posit
isometries of different Euclidean spaces. It can be found on
book on Lie groups like~@6#! that SEi(n) is indeed a Lie group.
We will indicate with sei(n)ªTei

SEi(n) the Lie algebra corre-
sponding to the Lie groupSEi(n).

Second, it is possible to see thatSEi
j (n) is indeed a finite di-

mensional smooth manifold. This can be seen by taking any
thonormal reference frameC i fixed in Ei and any orthonorma
frameC j fixed inEj . Doing so, it is possible to see thatSEi

j (n) is
diffeomorphic to the matrix Lie group of homogeneous matric
and thereforeSEi

j (n) is indeed a manifold.
To improve intuition clarity, we could consider the orientatio

writing the name of the Euclidean space on each of the sheets~see
Fig. 2!. It is then possible to see that in Fig. 2,h1

2 is a positive
isometry and this can be seen by shifting the two sheets of p
so that the two hammers coincide, as reported bottom left in
figure. Furthermore,h̃1

2 is still an isometry but it is not positive
since we must first turn over the sheet before all the points of
sheet correspond to those on the other sheet. This is repo
bottom right of the figure. The last mapping,h̄1

2, is not even an
isometry since it changes distances between points and there
way to place the two sheets so that the points on one will co
spond to the points on the other.

DEFINITION 4. ~Relative Position! An element hi
jPSEi

j (n) is
called a relative position ofEi with respect toEj .

It is important to reflect a moment on the previous definitio
Observers and/or objects are associated to a Euclidean spa
which they are rigidly connected. We can think of all these spa
as interpenetrating. In the example, this ‘‘interpenetration’’ can
understood by considering how the sheets overlap. In each ins
all the points of one of the spaces, will have associated point

Fig. 1 An example of a two-dimensional Euclidean system
930 Õ Vol. 68, NOVEMBER 2001
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each of the other spaces. In the example ‘‘the association’’ is
one which assigns to all the points of one sheet the correspon
points underneath on another sheet. This map is represented
positively oriented isometry. It is important at this point to reas
without any use of coordinates because it enables us to de
entities which are intrinsic. We can now define akinematic state.

DEFINITION 5. ~Kinematic State! We call a kinematic state for
a Euclidean system Sm(n) a point:

hª~h2
1,h3

2, . . . ,hm
m21!PSE2

1~n!3SE3
2~n!3 . . . 3SEm

m21.

Most of the euclidean spaces belonging toSm(n) will represent
physical bodies. These spaces have a subsets of pointsBi,Ei
where matter is present. This setBi is called thematter setand it
corresponds to the Euclidean spaceEi .

We say that a Euclidean space inSm(n) is apure observeriff its
matter set is the empty set. In the working example, the setB1 will
be the set of points where the hammer is,B2 where the screw
driver is andB3 where the spanner is. These are sets in tw
dimensional Euclidean spaces. In the examples there are no
observers which could be thought of as additional sheets with
objects on it. We can now talk about a compatible kinematic sta

DEFINITION 6. ~Compatible Kinematic State! We will say that a
kinematic state h as defined in Definition 5 is compatible
hi

j (Bi)ùBj5B; iÞ j i , j 51, . . . ,m.
The previous definition can be used to describe object imp

etrability. This is the simplest and most basic constraint which h
to be satisfied at this stage: Rigid objects will not penetrate o
another.2

The idea of compatibility of state is illustrated in Fig. 3. Th
relative position ofE1 andE2 does not create any problem for th
kinematic state compatibility, but the relative position ofE1 andE3
is not compatible since it maps points of an object belonging
one space to points of another object of another space. Remem

2In reality, when bodies will contact each other, they will slightly deflect an
generate an elastic force which will oppose the compenetration.

Fig. 2 Maps between Euclidean spaces
Transactions of the ASME
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that, in the example, the previously considered map, correspo
to the one which maps points of one sheet~Euclidean space! to the
points underneath on another sheet.

Here a remark is in place: At first glance the presented fram
work would seem unnecessarily theoretical and formal. Nevert
less, such an approach is not just fundamentally meaningful,
could be used as the basis for implementing computer tools for
analysis of mechanisms. To be able to describe a mechanism
need to have formal and exact ways to represent information
the definitions proposed here help to give such a structure.

We can now define the corresponding left, right, and conju
tion maps between two spaces. Note that if the spaces are d
ent, these operations are neither endomorphisms nor group o
tions. This is why we use the adjective ‘‘hybrid’’ for the following
definitions.

DEFINITION 7. ~Hybrid Right and Left Maps! We call

Rh
i
j :SEj~n!→SEi

j~n!;hj°hj o hi
j

the right hybrid map for the pair of spaces(Ei ,Ej ) at hi
j

PSEi
j (n) and

Lh
i
j :SEi~n!→SEi

j~n!;hi°hi
j o hi

the left hybrid map for the pair of spaces(Ei ,Ej ) at hi
j

PSEi
j (n).

The ‘‘o’’ indicates the composition of maps. The left hybrid ma
can be used to create a bijection betweenSEi

j (n) andSEi(n) and

Fig. 3 Compatibility of the kinematic state
f
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the right hybrid map can be used to create a bijection betw
SEi

j (n) andSEj (n). Remember thatSEi
j (n) represents the spac

of relative positions ofi and j independent on any relative refe
ence position. Then it is possible to consider how the correspo
ing representations inSEi(n) andSEj (n) are related given a ref-
erence relative positionhi

j . This is done using the hybrid
conjugation map.

DEFINITION 8. ~Hybrid Conjugation Map! We will call the map
Kh

i
jªRh

i
j

21
Lh

i
j , hybrid conjugation map for the pair of space

(Ei ,Ej ) in hi
jPSEi

j (n). This map can be expressed as

Kh
i
j :SEi~n!→SEj~n!;hi°hi

j o hi o ~hi
j !21.

With respect to the previous definitions of hybrid right, left an
conjugation maps, it is important to note that if the domain a
range spaces coincide~they are the same Euclidean space!, these
maps become endomorphisms and correspond to the standar
group maps on a special isometry group~@6#!.

Remark 1. ~Swap Domain-Range! If in the previous definition
we would swap the domain space with the range (i↔ j ), the result
is that r→r 21, h→h21 and the right maps would correspond
the previous left maps and so on. This can be formally stated
follows:

~Lh
21~r !!215~h21 o r !215~r 21 o h!5R

~h21!

21
~r 21!

wherer ,hPSEi
j (n) and the previous elements are all belonging

SEi(n), or dually,

~L
~h21!

21
~r 21!!215~h o r21!215~r o h21!5Rh

21~r !

wherer ,hPSEi
j (n) and the previous elements are all belonging

SEj (n).
This remark has important implications when twists a

introduced.
It can be easily verified thatKh

i
j(ei)5ej;hi

jPSEi
j (n), where

ekPSEk(n) is the identity element of the groupSEk(n). We can
consider the tangent map ofKh

i
j :
~Kh
i
j !* :TSEi~n!→TSEj~n!;~hi ,v i !°S hi

j o hi o ~hi
j !21,

d

dt
~hi

j o ev i thi o ~hi
j !21!U

t50
D (1)
tion

n

oup
where with ev i thi we used the usual exponential map~@6#! to
consider a curve inSEi(n) parameterized byt and passing
throughhi at time t50 with velocity v i . It is now possible to
define the hybrid adjoint.

DEFINITION 9. ~Hybrid Adjoint! We call hybrid adjoint from
space sei(n) to space sej (n) the following map:

Adh
i
j :sei~n!→sej~n!;t i°P~~Kh

i
j !* ~ei ,t i !!

whereP~•! indicates the fiber projection~@14#!, which in this case
corresponds to the tangent space in ej , the identity element o
SEj (n).

It is important to note thatsei(n) andsej (n) are NOT the same
and that there is no natural identification for these algebras.3 Fur-

3The vector spacessei(n) andsej (n) are algebras since they have a commuta
operator derived from the Lie Bracket of vector fields onSEi(n) and SEj (n). For
details see@5#.
thermore, if the domain and range space ofAdh
i
j coincide, the

hybrid adjoint corresponds to the usual adjoint group opera
~@6#!.

We can associate an element ofSEi(n) or SEj (n) to a relative
position ofi with respect toj corresponding to ahi

jPSEi
j (n) using

a referencer i
jPSEi

j (n):

hi5Lr
i
j

21
~hi

j !5~r i
j !21 o hi

j (2)

hj5Rr
i
j

21
~hi

j !5hi
j o ~r i

j !21. (3)

Remark 2. Note that the identification of a relative position by a
element ofSEi(n) or an element ofSEj (n) is NOT intrinsic and
depends on the choice of a reference relative positionr i

j . This is
often not stated in the literature, even though the use of Lie gr
theory for rigid body motions description depends on it!

or
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3 Twists
So far we have considered relative positions without introd

ing motion. The latter is clearly a change of relative position.
be able to talk about change, we need to consider a time sI
which will be an open interval ofR. We can then consider curve
in SEi

j (n) parameterized bytPI .

DEFINITION 10. ~Relative Motion! We call a differentiable
function of the following form4

hi
j :I→SEi

j~n!

a relative motion of spaceEi with respect toEj where I is a close
interval of R.
L
g

d
,
r
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Since relative motions are differentiable, we can consider
velocity vector of the curve athi

j which we indicate as

ḣi
jPTh

i
jSEi

j~n!.

The elementḣi
j which is also indicated asv i

j is called relative
velocity in hi

j .
Considering Eq.~2! ~respectively Eq.~3!! we can map these

relative motion velocities to elements of the tangent bun
TSEi(n) ~respectively,TSEj (n)!:
~Lr
i
j

21
!* :TSEi

j~n!→TSEi~n!:~hi
j ,v i

j !°S Lr
i
j

21
~hi

j !,
d

dt
~~Lr

i
j

21
~ev i

j thi
j !!!U

t50
D (4)
f
ity

r-

is

g
the

-
ider
a

. 4

e
r-

-
ion
where with t°ev i
j thi

j we indicate any curve inSEi
j (n) passing

throughhi
j at time t50 with velocity v i

j . An analogous map can
be used to map toTSEj (n) using the hybrid right translation.

Remark 3. ~Inverse Mapping! It is important to realize that
each hi

j :I→SEi
j (n) is bijective to a hj

i :I→SEj
i (n);

t°(hi
j (t))21. This implies also that to eachḣi

jPTh
i
jSEi

j (n) an

elementḣ j
i PTh

j
i SEj

i (n) will uniquely correspond. This means tha

whenever we will talk about vector fields or distributions o
SEi

j (n), we will uniquely also have corresponding vector fields
distributions defined onSEj

i (n).
So far, we have shown a way to map relative velocities

elements ofTSEi(n) or TSEj (n). Both of these maps are no
intrinsic since they depend on a choice of a reference rela
position r i

j . These elements belong to tangent bundles of
groups and therefore it is meaningful to transport these tan
vectors to the group identities by means of either left or rig
translations~@6#!.

3.1 Transports to the Identity of the Domain Lie Group.
Consider the element (Lr

i
j

21)* (hi
j ,v i

j ) which is the representative

in TSEi(n) of the relative motion ofEi with respect toEj in the
relative positionhi

j with a relative velocityv i
j . We can transport

this tangent vector toei , the identity element ofSEi(n) either by
left or right translation. An important result is the following:

THEOREM 1. The left translation to the identity of the left hybri
translated tangent vector representative of a relative motion
defined intrinsically and independent of any choice of a fixed
erence ri

j .

Proof. Consider an element (hi
j ,v i

j )PT* SEi
j (n). Consider a rela-

tive motion

h̃i
j :@2a,a#→SEi

j~n!

with a.0 and such thath̃i
j (0)5hi

j and (d/dt)(h̃i
j (t))u t505v i

j .
Defining

~hi ,v i !ª~Lr
i
j

21
!* ~hi

j ,v i
j !

it is possible to see thathi5h̃i(0) and v i5(d/dt)(h̃i(t))u t50

whereh̃i(t)5Lr
i
j

21(h̃i
j (t)).

4Note the abuse of notation here:hi
j has been used both as an element ofSEi

j (n)
and as a function fromI to SEi

j (n).
t

n
or

to
t
tive
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To calculate the left translation at the identity of (hi ,v i), we
have, therefore

t i
i , j
ªP~~Lh

i
21!* ~hi ,v i !!5 . . . 5

d

dt
~~ h̃ j

i ~0! o h̃i
j~ t !!u t50 .

(5)
h

It is possible to see that the last expression is independent or i
j

and therefore defined intrinsically. We will call the last quant
t i
i , jPsei(n) the intrinsic twist of the motion ofEi with respect to

Ej expressed in the spacesei(n).
Note the notation: int i

i , j the subscript and the second supe
script indicate the relative motion, which in this case isi with
respect toj. The first superscript indicates in which algebra th
motion is expressed, which in this case issei(n). The reader
could be tempted to say thatt i

i , j is the twist that an observer sittin
in Ei would observe. This is NOT the case as can be seen in
commutation diagram of Fig. 4: An observer sitting inEi and
looking to a pointpj fixed in Ej , would observe exactly the op
posite motion to the one described. To understand this cons
that the observerEi for whom the time increases would see
motion corresponding to a mapping frompi(0) to pi(t) with t
.0 which has a direction opposite to the one reported in Fig
and corresponds to (hj

i (0)oh̃i
j (t)).

If instead of left translating to the identity we right translate, w
do NOT get a quantity that is intrinsically defined. This is fo
mally stated below:

THEOREM 2. The right translation to the identity of the left hy
brid translated tangent vector representative of a relative mot
is NOT intrinsically defined and is equal to

Fig. 4 Commutation diagram of the intrinsic left translations
Transactions of the ASME
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t̄ i
i , j5Adr

j
i t i

j , j

where

ti
j , j
ª

d

dt
~~ h̃i

j~ t !oh̃j
i ~0!!!U

t50

. (6)

We will indicate with the simplified notationt i
j5t i

j , j when the two
superscripts coincide.

Proof. With similar definitions as in the previous theorem, w
show that

t̄ i
i , j
ªP~~Rh

i
21!* ~hi ,v i !!5 . . .

5
d

dt
~~r j

i oh̃i
j~ t !oh̃j

i ~0!ori
j !!U

t50

5Adr
i
j t i

j . (7)

h

3.2 Transports to the Identity of the Range Lie Group.
Like we did in the previous subsection, we can first use the hyb
right translation to map relative motions toSEj (n), and then Lie
group right of left translations withinSEj (n) to map to the iden-
tity. The following two theorems then correspond to the previo
ones.

THEOREM 3. The right translation to the identity of the righ
hybrid translated tangent vector representative of a relative m
tion, is defined intrinsically, independent of any choice of ref
ence ri

j and equal to ti
j as defined in Eq. (6).

Proof. See proof of Theorem 1. h
Observing the commutation diagram of Fig. 5, we can see

the twistt i
j is indeed the twist that an observer sitting inEj would

observe. The diagram shows that a fixed pointpiPEi is indeed
mapped from a pointpj (0)PEj to future pointspi(t). This means
that the right translation is somehow more representative. On
other hand, as a consequence of what was said in Remark 1
could consider the isometries going fromj to i corresponding to
the inverse of what was done so far. This would result to a ri
translation which would give the intrinsic twistt j

i . This will be
discussed in detail later.

If instead of right translating to the identity we left translate, w
do NOT get an intrinsically defined quantity. This is formal
stated in what follows:

THEOREM 4. The left translation to the identity of the right hy
brid translated tangent vector representative of a relative mot
is NOT defined intrinsically and is equal to

t̄ i
j5Adr

i
j t i

i , j .

Proof. See proof of Theorem 2. h
In a similar way, it is also possible to find an intrinsic mappi

which maps intrinsic twists of one space to the other. This
formally stated in the following theorem which can be prov
along the same lines as the previous ones.

Fig. 5 Commutation diagram of the intrinsic right translations
Journal of Applied Mechanics
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THEOREM 5. ~Map Between Intrinsic Twists! For any relative
position hi

j , a bijection exists between the intrinsic twists
sei(n) and the ones in sej (n). This map is given by

ti
j5Adh

i
j t i

i , j .

Adh
i
j is to the hybrid adjoint of Definition 9.

The thick cross-hatched lines show the intrinsic maps to
between the Lie algebras of the Lie groups of the motions of
two spaces under consideration. Only those twists are intrinsic
independent of the referencer i

j which are obtained by following
the maps to the circledsei andsej .

Furthermore, it has been shown that the standard adjoint m
within the Lie algebras of the two spaces are not maps betw
intrinsically defined quantities. This means that in a coordin
free framework, it is not correct to say that the adjoint gro
operation maps twists from one reference to the other since on
the two elements is not intrinsic and dependent on the refere
r i

j . We denoted these nonintrinsic elements witht̄ i
j and t̄ i

i , j .

3.3 Relations Between Twists. It is possible to see that the
complete right translation is somehow more representative t
the left one since it gives the motion ofEi that an observer sitting
in Ej would observe directly. From the considerations of Fig.
and Fig. 5, it should be clear that

t i
j5

d

dt
~~ h̃i

j~ t !oh̃j
i ~0!!!U

t50

represents the motion ofEi for an observer sitting inEj . In exactly
the same way, namely by inverting the domain and range spac
explained in Remark 1, we could arrive at the definition of

t j
i 5

d

dt
~~ h̃ j

i ~ t !oh̃i
j~0!!!U

t50

which would correspond again to the right translation to the id
tity of the right hybrid translated tangent vector of a motion, b
now in the opposite direction: for the isometries fromEj to Ei .

A representation of the two intrinsic right translated twistst i
j

andt j
i is shown in Fig. 6. It is possible to see that the direction

t1
2 is opposite to that one oft2

1. This relation can be formally state
in the following theorem.

THEOREM 6. ~Twist Relations! With the notation used previ
ously, the following identities hold:

2t j
j ,i5t i

j5Adh
i
j t i

i , j52Adh
j
i t j

i (8)

and

t j
i 52t i

i , j52Adh
j
i t i

j5Adh
j
i t j

j ,i . (9)

Instead of giving a formal proof of the previous theorem, Fig.
Fig. 8, Fig. 9, and Fig. 10 can be used to understand the re
Figures 7 and 8 represent the right translated relative motio
the two directions and the bottom ones are the left transla
Figures 7 and 9 correspond to the intrinsic mapsph

i
j

j which is also

denoted withph
i
j ~Fig. 7! andph

i
j

i
~Fig. 9! of Fig. 11 and Figs. 8

and 10 correspond to the intrinsic mapsph
j
i

i
~Fig. 8! andph

j
i

j
~Fig.

10! of a diagram similar to Fig. 11, but now the considered iso
etries would belong toSEj

i (n) instead ofSEi
j (n).

4 The Simplification to Lie Groups
In Section 3, we have worked in a coordinate-free manner

we introduce coordinates, we can identify certain operations us
a matrix algebra. We will see that an intelligent choice of t
NOVEMBER 2001, Vol. 68 Õ 933
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Fig. 7 t i
jÄ

d
dt „h i

j
„t …Œh j

i
„0……z0

Fig. 8 t j
iÄ

d
dt „h j

i
„t …Œh i

j
„0……z0

Fig. 9 t i
i , jÄ

d
dt „h j

i
„0…Œh i

j
„t ……z0

Fig. 10 t j
j , iÄ

d
dt „h i

j
„0…Œh j

i
„t ……z0
BER 2001
referencer i
j dependent on the choice of the coordinates, will yie

standard Lie group operations of the matrix groupSE(n) as pre-
sented in@7#.

First of all we need to define what we mean with ‘‘Cartesi
coordinates’’ for a Euclidean space.

DEFINITION 11. ~Cartesian Coordinates! An isometry of the fol-
lowing form:

C i :Ei~n!→Rn

is called Cartesian coordinates or simply coordinates for a E
clidean spaceEi(n), where we consider the canonical metric
Rn represented by the identity matrix. We will call this Cartesi
coordinate right handed or positive oriented iff'l
PC`(Ei) s.t. l(•).0 and lV i5(C i)* (dx1∧dx2∧ . . . ∧dxn),
where with(C i)* we indicated the pullback operator, V i is the
n-form orientingEi and (dx1∧dx2∧ . . . ∧dxn) is the canonical
n-form in Rn.

It is possible to show that there exists a bijection between
set of right handed Cartesian coordinates and the set
(n11)-tupels of the form (p,e1 ,e2 , . . . ,en) where pPEi ,ek

PTpEi and such thatgp(ei ,ej )5d i
j; i , j 51, . . . ,n where d i

j is
the Kronecker symbol andgp is the metric of the Euclidean spac
in the pointp. The vectorse1 , . . . ,en attached top would be the
usual base frame which can be used to express vectors.

Fig. 11 The complete commutation diagram
Transactions of the ASME
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4.1 Isometries inRn. The positively oriented motions inRn

will be essential to what follows. It is well known that this set
homeomorphic to the special isometries matrix groupSE(n)
which is defined in the following way:

SE~n!ªH S R p

0 1D s.t. RPSO~n!,pPRnJ (10)

where withSO(n) we indicate the special orthonormal group
orthonormal matrices defined as

SO~n!ª$RPRn3n s.t. det~R!51,R215RT%. (11)

We see that the operationy5h(x) for a positive isometryh from
Rn to itself corresponds to a matrix multiplication of the form:

S y
1D5S R p

0 1D S x
1D

where the matrix belongs toSE(n). This representation of point
of Rn by means of vectors ofRn11 is the concept on which pro
jective geometry~@15#! is based. In this framework, elements
SE(n) can be seen as projective transformations which are
called homographies or collineations. These are all concepts o
used in screw theory~@8#!.

4.2 Representation of Relative Positions With Coordi-
nates. Suppose we associate with eachEiPSm(n) a right-
handed coordinate frameC i . We can, therefore, assign an el
ment of Hi

jPSE(n) to each elementhi
jPSEi

j (n) which corre-
sponds to the following isometry ofRn:

Hi
j5C j o hi

j o C i
21. (12)

The elementHi
j is an element ofSE(n) because it is defined as

composition of positively oriented isometries and it is therefor
positively oriented isometry ofRn. Note thatHi

j is actually a (n
11)3(n11) matrix which can therefore be used as a linear m
ping from (n11)-tuples to (n11)-tuples. From now on we will
consider all these (n11)-tuple as having the last component th
is equal to 1. With the previous abuse of notation it is then p
sible to considerHi

j as a mapping fromRn to Rn.

4.3 Coordinates to Represent Twists. When looking at the
expressions fort i

j , t j
i , t i

i , j , andt j
j ,i , we can see straightaway tha

by applying Eq.~12!, their matrix representation becomes

Ti
j5Ḣ i

jH j
i Tj

i 5Ḣ j
i Hi

j Ti
i , j5H j

i Ḣ i
j Tj

j ,i5Hi
j Ḣ j

i . (13)

What will be the form of these matrices? This question can
easily answered when using the following well-known results.

THEOREM 7. ~Derivatives of Orthonormal Matrices! Given an
orthonormal matrix RPSO(n) that is a smooth function of time
the matrices R˙ R21 and R21Ṙ are given by antisymmetric matri
ces of dimensionRn3n.

Proof. The proof follows straightaway when differentiatingRR21

andR21R. h
It is now possible to extend the result to elements ofSE(n).

THEOREM 8. ~Derivatives of Isometries! Given a matrix H
PSE(n) that is a smooth function of time, the matrices H˙ H21

and H21Ḣ are given by matrices of the following form:

S V v

0 0D (14)

whereVPRn3n is antisymmetric5 and vPRn.

5Note thatV PSO(3).
Journal of Applied Mechanics
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Proof. The proof follows in a straightforward manner whenḢH21

andH21Ḣ are written out as matrices of the form in Eq.~10! and
the previous theorem is used. h

Since the dimension of the vector space of antisymmetric matr
belonging toRn3n is n(n21)/2 for the three-dimensional case
we can associate a three-dimensional vectorv to the matrixV in
Eq. ~14! such thatv∧x5Vx ;x PR3. The six-dimensional vec-
tor (v,v) can therefore be considered to be the numerical rep
sentation of the intrinsic twist for the chosen coordinatesC i and
C j . These are closely related to thePlücker coordinatesin screw
theory ~@3, 8#!.

4.4 The Link With Standard Lie Groups. It is now
possible to link the presented material to the standard Lie gr
approach.

THEOREM 9. If we choose as reference ri
j5C j

21 oC i , with the
coordinate functionsCk k51,...,n then, Adr

i
j , Adr

j
i will be repre-

sented by the identity, and all the maps on the right side of
diagram in Fig. 11 will have the same representations as the s
metrically corresponding maps on the left.

Proof. Can be shown by using a representation with coordinateh

Note that the choice ofr i
j5C j

21 o C i has a very straightforward
explanation: We consider as a reference relative position that
sition in which the coordinate frames (p,e1 , . . . ,en), which are
then vectorse1 , . . . ,en attached top and represent the Cartesia
coordinatesC i andC j , coincide. This choice is useful for prac
tice but NOT intrinsic and depends on the choice of coordin
frames for an initial relative position.

By using coordinates, we achieve that the commutation d
gram of Fig. 11 ‘‘folds’’ its right and left parts on one another
give the standard Lie group commutation diagram reported in F
12 whereH5C jo hj o C j

215C io hi o C i
215C io hi

j o C j
21.

5 Conclusions
This article has shown that behind the use of Lie groups

rigid-body motions, there are implicit assumptions that, even
more or less ‘‘natural,’’ are not intrinsic and just dependent on
choice of relative reference between spaces~see Remark 2!.

It is always important to pinpoint those assumptions which
not intrinsic: Any hypothesis which is not intrinsic can in fact b
considered a modeling hypothesis and should be made explic
such.

Twists have been analyzed in detail and their mappings
relations have been shown. The intrinsic mappings using r
translations are the ones which give the motion of a space w
respect to an observer space directly and have been denoted
only one subscript and one superscript:t i

j or t j
i .

Fig. 12 The Lie group commutation diagram
NOVEMBER 2001, Vol. 68 Õ 935
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Experimental Determination of KI
for Short Internal Cracks
Since the pioneering discussion by Irwin, a significant effort has been devoted to d
mining stress intensity factors (K) using experimental methods. Techniques have
developed to determine stress intensity factors from photoelastic, strain gage, cau
and moirédata. All of these methods apply to a relatively long single-ended-edge c
To date, the determination of K for internal cracks that are double-ended by experim
methods has not been addressed. This paper describes a photoelastic study of
panels with both central and eccentric internal cracks. The data recorded in the ex
ments was analyzed using a new series solution for the opening-mode stress in
factor for an internal crack. The data was also analyzed using the edge-crack s
solution, which is currently employed in experimental studies. Results indicated tha
experimental methods usually provided results accurate to within three to five perc
the series solution for the internal crack was employed in an overdeterministic nume
analysis of the data. Comparison of experimental results using the new series fo
internal crack and the series for an edge crack showed the superiority of the new s
@DOI: 10.1115/1.1381004#
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Introduction

When applying fracture mechanics to the analysis of the sa
of structures containing flaws, it is necessary to determine frac
parameters such as stress intensity factors. In some of these a
ses the opening mode stress intensity factor,K I , and/or the for-
ward shear mode stress intensity factor,K II , may be determined
from existing theoretical solutions to well-defined boundary va
problems. However, when theoretical solutions are not availa
stress intensity factors are often obtained by numerical analy
but again the structure and the material are usually idealized
the loading must be known.

If the structure cannot be idealized or the nominal stresses
not known in the region of the structure containing the cra
experimental methods are used to determineK I and/orK II . These
experimental methods include photoelasticity, strain gages, m´,
and caustics applied to either a model or to the actual structur
method for the experimental determination ofK I and sox

1 from
isochromatic fringe patterns was first outlined by Irwin@1# in a
discussion of a paper by Wells and Post@2#. In the years following
Irwin’s pioneering contribution, a number of investigators~@3–8#!
extended his method to improve the accuracy of the predict
and to include the simultaneous determination ofK I andK II and
sox . However, all of these techniques were based on a sm
number of measurements of the field parameters~fringe order,N,
and position,r andu!; consequently, the accuracy of the determ
nation of the stress intensity factors often suffered. Later, San
and Dally @9# introduced a general method for determiningK I ,
K II , andsox based on an overdeterministic analysis of data ta
from a large number of points in the local neighborhood surrou
ing the tip of the crack. The use of full-field data permitted
significant improvement in the accuracy of the determination
K I , K II , and sox . The overdeterministic approach of referen

1sox is a uniform stress in the direction of the crack, which is also referred to
the T-stress.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2000; final revision, Jan. 18, 2001. Associate Editor: K. Ravi-Chandar. Discussio
the paper should be addressed to the Editor, Prof. Lewis. T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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~@9#!, originally developed for analysis of photoelastic data, w
extended to other experimental techniques for measuring s
intensity factors~@10–12#!.

All of the experimental methods for determining stress intens
factors in finite bodies employ data taken from the intermedi
region defined in Fig. 1. In the intermediate region, a singu
term plus a small number of higher order terms accurately
scribes the stress field. Data taken from the near field, also defi
in Fig. 1, do not yield accurate results because of the stress fie
three-dimensional~neither plane stress or plane strain! in this re-
gion ~@13#!. Also, if the data points are located very close to t
crack tip, errors in measuringr and u are often excessive. Dat
from the far field are not useful because excessively large n
bers of terms in the general solution is required to yield accu
results. Also, far-field terms are insensitive toK values.

For long edge cracks~single-ended!, data from the intermediate
region provide an accurate means for determining eitherK I or K II
or a combination of both in the case of mixed mode loading. F
short edge cracks, the single-ended solution augmented wi
series containing several higher order terms provides an adeq
approximation. For internal cracks~double-ended!, current prac-
tice is to employ the same augmented single-ended solution an
ignore the effect of the second singularity. This practice for de
mining the stress intensity factors data is an adequate approx
tion that may be used with confidence if the internal crack
sufficiently long. On the other hand, if the crack is sufficien
short, it is clear that the influence of the singularity from bo
ends of the crack affects the stress field in the intermediate reg
and consequently techniques based on the augmented near
equations may lead to significant errors.

Recently, Sanford and Drude@14# published a series solution
for an internal crack giving the relations for the mode 1 stresse
the intermediate region. This solution, which accounts for
stress singularities at both ends of the crack, was employed in
study to determineK I for both symmetric and eccentric interna
cracks of various lengths located in a tension panel. Photoela
methods were used to collect approximately 200 data points f
a broad region surrounding both crack tips as shown in Fig. 2.
iterative, overdeterministic method was employed to estimate
coefficients in the two different series describing the stress fiel
the region near the crack tips. This approach is a generalizatio
the method proposed by Sanford and Dally@9#. Although the nu-
merical analysis of the experimental data is nonlinear, the solu

as
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converges rapidly. Since the values ofK I are determined at both
crack tips, the method may be employed for both symmetrical
unsymmetrical geometries in a single analysis.

Results from ten experiments with center cracks in several
sion panels are presented showingK I determined using both the
single and double-ended solutions in analyzing the same data
The results from both methods of data analysis are compared
theoretical results and the errors for both approaches are i
trated as a function of crack length.

Results from five experiments involving tension panels w
eccentric cracks are also are presented. In this series of ex
ments, the data were analyzed using only the theory for the in
nal crack. The experimental results for cracks with different
centricity ratios were compared with theoretical results fro
Isida’s @15# series solution forK I .

Theory
For edge cracks with a single crack tip in a finite body, Sanf

@16# has shown that the Airy’s stress function for the open
mode is given by

f5Re Z5 ~z!1y Im Z̃~z!1y Im Ỹ~z! (1)

Fig. 1 Illustration of the near, intermediate, and far-field re-
gions near the single-ended crack tip

Fig. 2 Light and dark field isochromatic fringe patterns yield a
set of data points for numerical analysis
938 Õ Vol. 68, NOVEMBER 2001
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where

Z~z!5
dZ̃~z!

dz
5

d2Z5 ~z!

dz2 , Y~z!5
dỸ~z!

dz

and

z5x1 iy5Re~z!1 i Im~z!5re~ iu!.

The stresses in terms of these functions are expressed as

sx5
]2f

]y2 5ReZ~z!2y@ Im Z8~z!1Im Y8~z!#12ReY~z!

sy5
]2f

]x2 5ReZ~z!1y@ Im Z8~z!1Im Y8~z!#
(2)

txy52
]2f

]x]y
52Im Y~Z!2y@ReZ8~z!1ReY8~z!#

where Z8~z!5
dZ~z!

dz
and Y8~z!5

dY~z!

dz
.

The complex functionsZ(z) and Y(z) for a body containing an
edge crack are

Z~z!5(
n50

N

AnZn21/2

(3)

Y~z!5 (
m50

M

BmZm

whereAn andBm are coefficients to be determined by a numeric
analysis of experimental data. The opening mode stress inten
factor,K I , and the uniform stress,sox , are related to onlyA0 and
B0 by

K I5A2pA0 (4)
s0x5B0/2.

The complex functions defined in Eq.~3! are not valid for the
internal crack because they accommodate only the single si
larity associated with an edge crack; however, singularities exis
both ends of an internal crack. To accommodate the singular
at each of the crack tips, Sanford and Drude@14# have proposed a
new stress functionZ(z) with singularities located atz5a andz
5b of the form

Z~z!5(
j 50

J

A j

~z2z0! j 11

A~z2a!~z2b!
and (5)

Y~z!5 (
m50

M

B m~z2z0!m

wherez05(a1b)/2.
The coordinate system for the internal crack in a finite body

shown in Fig. 3. The stresses are determined by substituting
~5! into Eq. ~2! to obtain

Fig. 3 Coordinate system for the internal crack
Transactions of the ASME
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j 50

J

Aj

r 0
j 11

~r 1r 2!1/2 H cosF ~ j 11!u02
u11u2

2 G J
2~ j 11!sinu0 sinF j u02

u11u2

2 G
1

1

2 S r 0

r 1
D sinu0sinF ~ j 11!u02

3u11u2

2 G
1

1

2 S r 0

r 2
D sinu0sinF ~ j 11!u02

u113u2

2 G
1 (

m50

M

Bmr 0
m@2 cosmu02sinu0 sin~m21!u0# (6)

sy5(
j 50

J

Aj

r 0
j 11

~r 1r 2!1/2 H cosF ~ j 11!u02
u11u2

2 G J
1~ j 11!sinu0 sinF j u02

u11u2

2 G
2

1

2 S r 0

r 1
D sinu0 sinF ~ j 11!u02

3u11u2

2 G
2

1

2 S r 0

r 2
D sinu0 sinF ~ j 11!u02

u113u2

2 G
1 (

m50

M

Bmr 0
m@m sinu0 sin~m21!u0# (7)

txy52(
j 50

J

Aj

r 0
j 11

~r 1r 2!1/2 H ~ j 11!cosF j u02
u11u2

2 Gsinu0J
2

1

2 S r 0

r 1
D sinu0 cosF ~ j 11!u02

3u11u2

2 G
2

1

2 S r 0

r 2
D sinu0 cosF ~ j 11!u02

u113u2

2 G
2 (

m50

M

Bmr 0
m@sinmu01m sinu0 cos~m21!u0#. (8)

The relations for the stress intensity factors are obtained
each crack tip by employing the limit definition ofK at each crack
tip with the limit taken from the material side.

K5 lim
r⇒0

syuu50,pA2pr (9)

Substituting Eq.~7! into Eq. ~9! yields

Ka5(
j 50

J

Aj

A2p

Aa2b
S a2b

2 D j 11

(10)

Kb5(
j 50

J

~21! jAj

A2p

Aa2b
S a2b

2 D j 11

. (11)

Examination of Eqs.~10! and ~11! indicates that the stress in
tensity factorsKa andKb depend on the summation of all of th
unknown coefficientsAj . This is different from previous experi
ence with edge cracks whereK1 depended only onA0 as indicated
in Eq. ~4!.

For boundary value problems with symmetry, such as the c
tral crack in a tension panel,Ka andKb are equal. To achieve thi
equality, it is necessary for all of the odd coefficients,A1 ,A3 ,A5 ,
etc., to vanish. Of course, for boundary value problems with
centric crack geometries, the values ofKa and Kb differ and all
terms in the series expansion must be considered.
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Experimental Procedure
Photoelastic models of a tension panel, shown schematical

Fig. 4, were prepared from a 3.2-mm~0.12-in.! thick sheet of
photoelastic grade polycarbonate2 that was free of residual bire
fringence. The polycarbonate polymer exhibited a material frin
value of 7.00 MPa/mm/fringe~40 psi/in./fringe!. Both central and
eccentric cracks were introduced by first drilling a small hole
the horizontal centerline of the tension panel. A fine scroll s
was then inserted into the hole and cutting along the horizo
centerline formed a simulated crack. Several tension panels w
prepared with crack lengths (2a) ranging from 5.46 mm~0.215
in.! to 47.3 mm~1.862 in.!. The geometry of the symmetric an
eccentric photoelastic models is defined in Tables 1 and 2, res
tively.

The panels were loaded in tension in a screw-type univer
testing machine, and the fringes were displayed in a custom
ricated white-light diffused polariscope. The load applied to t
tension panel depended upon the length of the crack with incr
ing load associated with decreasing crack length. At a prescr
load, photographs of the fringe patterns formed about the cr
tips were recorded through a monochromatic filter~wavelength of
575 nm! using a color digital camera equipped with a 6403480
pixel array. Fringe patterns were recorded with the polariscope
for both light and dark field to double the number of fringe loo
available for analysis. Typical examples of the light and da
fringe patterns were illustrated in Fig. 2.

The photographs of the isochromatic fringe patterns were p
processed with image processing software. This interactive
gram allowed for scaling the size of the image and determin
the location and the number of the fringe order. The coordina
and the fringe order~x, y, andN! were established for about 20
data points from the pair of photographs for each photoela
model. Data was taken from the intermediate regions near b
crack tips and from the region between the crack tips. Charac
izing the fringes in the region between the crack tips is import
to the analysis of the data since they are unique to the inte
crack problem.

2PSM-1 is commercially available from Micro Measurements, Photolastic D
sion, Raleigh, NC.

Fig. 4 Geometry of the tension panels with symmetric and ec-
centric cracks
NOVEMBER 2001, Vol. 68 Õ 939



Table 1 Geometry of the photoelastic models with a central crack
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Table 2 Geometry of the photoelastic models with an eccentric crack
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Numerical Analysis of the Data
The full set of data points was used as input to an iterative o

deterministic method applied to the double-ended solution for
internal crack. The equations for the stresses and the applica
of a combined Newton-Raphson and linear-least-squares me
of analysis for this nonlinear formulation were programmed
Mathematica™. This approach is a generalization of the meth
introduced by Sanford and Dally@9# and follows the same proce
dure described by Sanford@17# except that the internal crack so
lution replaces the edge crack solution used for the single en
crack studies.

The mathematical approach for the data analysis is base
minimizing the function,g, which is derived from the photoelasti
stress optic law as indicated below:

gk5Dk
21Tk

22~N fs/2h!2 (12)

where D5@syy2sxx)/2]
T5txy
N is the fringe order
f s is the photoelastic material fringe value
h is the model thickness.

The subscriptk indicates the value ofg evaluated at a poin
(r k ,uk) with a fringe order ofNk located in the intermediate re
gion. SinceD andT are both dependent on coefficientsAj andBm
in Eqs. ~6!–~9!, the correct values for these constants will gi
gk50 for all values ofk. One initially estimates the coefficient
Aj and Bm and computesgk only to find gkÞ0. To correct the
error in the initial estimates of the coefficients, the values ofAj
andBm are adjusted using an iterative relation based on a Tay
series expansion ofgk as described in reference~@9#!.

Although the use of photoelastic data leads to a nonlinear r
tion among the coefficients of the series expansion for the stre
and the fringe order, the overdeterministic solution converged
idly. The K values at both crack tips are determined from t
best-fit coefficients from Eqs.~10! and ~11!. Introducing addi-
tional data points produced more rapid convergence but did
affect the overall results. Convergence was excellent, achie
differences between iterations of the order of 1023 in ten itera-
tions or less. Also, the initial estimate of the coefficients in t
series expansion was not a factor for the convergence of the
portant coefficients. In order to confirm the validity of the sol
tion, computer generated fringe patterns were constructed u
best-fit coefficients. Comparison of the computer generated fri
pattern with the original isochromatic fringe pattern, as illustra
in Fig. 5, indicates the ‘‘goodness’’ of the fit of the numeric
analysis with the original photoelastic data. This comparison
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the computer generated fringe pattern with the original fringe p
tern is important because it provides confidence that the data
selected from the intermediate region. If some the original d
points do not fall on or very near a computer generated fringe
is an indication that these points may not be within the interm
diate region where the series solution is representative.

Experimental Results

Central Cracks. The results obtained from ten different ex
periments with the central cracks of various lengths (2a) in ten-
sion panels subjected to a normalized load of 4448~1000 1b! are
presented in Tables 3 and 4. The results presented in Table 3
obtained by employing the series associated with an edge cr
given by Eq.~3!, which neglected the influence of the singulari
at the other end of the crack. The results presented in Table 4 w
determined with the series for the internal crack, Eq.~5!, where
singularities at both ends of the crack were accommodated.
results in both Tables 3 and 4 showed that the stress inten
factors increased with crack length as anticipated. Comparison
the experimental and theoretical results showed less than t

Fig. 5 Comparison of the original isochromatic fringe pattern
with a computer regenerated fringe pattern for a central crack
Transactions of the ASME
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Table 3 Opening mode stress intensity factor models with double-ended internal crack cen-
trally located, numerical analysis with a series solution for a single-ended edge crack load of
4448 N „1000 lb …

Table 4 Opening mode stress intensity factor models with a double-ended internal crack cen-
trally located, numerical analysis with a series solution for a double-ended internal crack load
of 1000 lb „4448 N…

Table 5 Comparison of results for the opening mode stress intensity factor, numerical analy-
sis with series solutions for edge and internal cracks load of 4448 N „1000 lb …
o

a
n

ex-
al
rical
.12
ies
the

were

r, in
percent error for experiments with longer cracks~i.e., 2a/W
.0.12!. Errors increased for those experiments with shor
cracks, but were always less than ten percent if the data w
analyzed using the internal crack series. For very short cra
~i.e., 2a/W,0.06!, the errors resulting from using the series f
the edge crack became excessive.

A comparison of the experimental results obtained with d
analysis using the edge and internal crack series in the data a
sis is presented in Table 5. This comparison shows that both
edge crack and internal crack series provide an accurate me
ied Mechanics
ter
ere
cks
r

ta
aly-
the

thod

for predictingK1 if the cracks are sufficiently long 2a/W.0.12.
In this group of experiments, the location of the data points
pressed asr ave/a was about 0.7. For all crack lengths, the intern
crack series was superior to the edge crack series in the nume
analysis of the data. For intermediate length cracks, with 0
,2a/W,0.3, the errors occurring when the internal crack ser
was employed ranged from 1.2 to 3.4 percent. However, when
edge crack series was utilized to evaluate the data the errors
more than twice as large. For very short cracks, 2a/W,0.06, the
errors increased with both methods of data analysis. Howeve
NOVEMBER 2001, Vol. 68 Õ 941



Table 6 Results for eccentric cracks in a tension panel, numerical analysis with internal crack
series load of 4448 N „1000 lb …
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all of the three experiments with the very short cracks the inter
crack series provided much more accurate results.

Eccentric Cracks. Experimental results from the photoelast
studies of eccentric cracks in tension panels are presented in T
6. The results for all four of the experiments were normalized
4448 N~1000 lb! applied load, and the crack lengths were nea
constant at 16 mm~0.63 in.!. The crack in model EC-1 was cen
trally located to give the case with zero eccentricity. The ecc
tricity, as measured by the ratioz0 /W, increased from 0.10 to
0.40 in models EC-2 to EC-5. For model EC-5, the tip right-ha
tip of the crack was only 8.0 mm~0.312 in.! from the vertical edge
of the photoelastic model.

Examination of Table 6 indicates that the experimental res
determined with a numerical analysis of photoelastic data us
the internal crack series is~with one exception! accurate to within
five percent. The comparison of the experimental results is m
with the theoretical results of Isida. Another comparison is sho
in Fig. 6 where the reconstructed fringe patterns are matched
the original photoelastic isochromatic fringe patterns. In mak
the comparison, only the region of data acquisition~shown by the
dots! is germane. Over the limited region, the strong similarity
the match of the two patterns is an indication of the adequacy
the data analysis method. Based on these results and the abil
the experimental solutions to model the fringe pattern between
crack tips, is clear evidence that the internal crack series of S

Fig. 6 Comparison of the original isochromatic fringe pattern
with a computer regenerated fringe pattern for an eccentric
crack
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ford and Drude accurately models the state of stress for inte
cracks in finite models subject to remote loading.

Discussion
The results from this photoelastic study of stress intensity f

tors K for central and eccentric cracks in a tension panel h
verified the general Westergaard series solution for the inte
crack. The series solution is used with the well-known overde
ministic method for numerically solving the nonlinear equatio
that occur when using photoelasticity for determiningK. Of
course, the results obtained depend on the quality of the data
the ‘‘goodness of the fit.’’ The use of a digital camera to record
data together with post processing by image analysis softw
enhanced the quality of the data and simplified the analy
Equally important was establishing the fit of the solution to t
data~@18#!. Some data points carry error into the solution beca
they are outside the intermediate region for which the series s
tion is representative. Second, some of these data points
flawed because of inherent measurement error. By comparing
reconstructed fringe patterns with the original fringe patterns,
may qualitatively judge the ‘‘goodness of the fit.’’ The fit may als
be assessed with an analysis of the sum of the squares o
cumulative errorE is given by

E5
1

k (
i 5 l

k

@No~r ,u!2Ns~r ,u!#2 (13)

whereNo and Ns are the fringe orders for the experimental a
reconstructed results at the locations~r, u! of the k data points.

Comparisons were made for the experimental results obta
by performing data analysis with the edge and internal crack
ries solutions. In general, we found that the error was redu
significantly when the internal crack series was employed to a
lyze the data. The reduction in error depended on the length o
internal crack with marked reductions for the very short crac
For short cracks the use of the internal crack series solutio
imperative if results with errors of about five percent are to
achieved. For the longer cracks both approaches gave satisfa
results with errors less than three percent. For intermediate le
internal cracks the superiority of the new series solution is a
evident if accuracy better than four percent is expected.

The series solution for the internal crack has two other adv
tages. First, solutions for both ends of the crack are obtained in
same analysis. This reduces the time required for the data ana
and enables one to more effectively deal with eccentric cra
subjected to mode 1 loading. Second, the internal crack se
solution effectively increases the size of the intermediate reg
With the internal crack series, data may be taken from much of
region over the crack where low-order fringes form. With the ed
crack series, the region over the crack must be avoided.
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Inertia Effects in a Curved
Non-Newtonian Squeeze Film

R. Usha and P. Vimala
Department of Mathematics,
Indian Institute of Technology,
Madras 600 036, India

1 Introduction
In recent years, hydrodynamically lubricated bearings are u

under increasingly severe conditions of high speed and he
load. Owing to the friction, the temperature of the lubricating fi
rises under such operations and the viscosity of the lubricating
decreases. Lubricating oils often contain sufficient additives
high molecular-weight polymers as a viscosity index improver
order to prevent viscosity variation with temperature change.
perimental evidence of rheological characteristics of polym
thickened oils indicates that such lubricants behave as n
Newtonian viscous fluids such as pseudo-plastic fluids when
amount of additives is small. It has been confirmed that the n
Newtonian viscous behavior of polymer-thickened oils may
approximated by a cubic equation model relating the shear s
and the rate of shear~@1#!. In the cubic equation model, the she
rate ġ is expressed in terms of the shear stresst as mġ5t
1kt3, wherek.0 characterizes the pseudo-plastic fluid;k50,
the Newtonian fluid andk,0, the dilatant fluid, the initial viscos
ity m is equal to the viscosity of the Newtonian fluid.

The effects of fluid inertia forces in parallel circular and annu
squeeze films lubricated with pseudo-plastic fluids have b
theoretically examined using the cubic equation model by
method of averaged inertia by Hashimoto and Wada@2,3#. This
study has been motivated by the significance of fluid inertia
fects in most squeeze films, in addition to the non-Newton
effects, where the operating speed is high or low viscosity flu
are used as lubricants~@4–7#!.

The effect of a curved surface on a Newtonian squeeze film
drawn the interest of many researchers due to its importanc
improving the performance of hydraulic machine elements
these studies include the investigations by Murti@8#, Gupta and
Kapur @9#, and Hasegawa@10#. In squeeze flow problems, the ga

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
16, 2000; final revision, April 28, 2001. Associated Editor: D. A. Siginer.
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between the approaching surfaces is small compared with the
mensions of the surfaces. Then, even if the order of wavines
the curved plates is small, the effect of nonflatness on the squ
film flow is not necessarily negligible. Further, in the case o
small squeeze velocity, the inertia forces due to the space va
tions in the flow are not always small compared with the visco
and the pressure forces. In view of this, it becomes importan
study the combined effects of inertia and curvature on the sque
film performance between curved surfaces.

In this note, the combined effects of fluid inertia, curvature, a
non-Newtonian characteristics on the squeeze film pressure
examined in a curved squeeze film between a flat circular disk
a curved circular disk lubricated with pseudo-plastic fluids d
scribed by a cubic equation model. The modified lubricati
theory is employed to obtain the equation for the pressure grad
and the equation is solved numerically for the pressure distr
tion for the sinusoidal motion of the upper curved disk describ
by an exponential function. Further, the analytical solution for
pressure distribution is obtained using a perturbation method.

2 Theoretical Analysis
The axially symmetric laminar flow of a non-Newtonian lubr

cant fluid that exhibits characteristics in agreement with the cu
equation model given by

m
]u

]z
5t rz1kt rz

3 (1)

between a flat circular disk located atz50 and a curved circular
disk at z5H(r ,t) is considered~Fig. 1~a!!. The film thickness
variation at radiusr is assumed to be

H~r ,t !5h~ t !e2cr2
(2)

whereH is axisymmetric about thez-axis andh(t) denotes the
central film thickness~Fig. 1~b!! ~@8,9#!. It is possible to generate
different types of films for different values ofc because of the
dependence onc. Concave films are generated forc.0 and con-
vex films are obtained forc,0. The top curved disk moves to
wards the bottom disk with velocitydh/dt and the central film
thickness is maintained as constant.

Using the hydrodynamic lubrication assumptions applicable
thin films, and retaining the inertial terms, the governing equat
of motion in ther-direction is given by

rS ]u

]t
1u

]u

]r
1w

]u

]zD52
]p

]r
1

]r rz

]z
(3)

whereu andw denote the radial and axial components of veloc
andt rz is the shear stress. The equation of continuity is

st
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Fig. 1 „a… Curved squeeze film geometry, „b… configuration of the curved disk
h

er.
l

1

r

]~ru !

]r
1

]w

]z
50. (4)

The boundary conditions are

u50, w50 on z50 (5)

u50, w5
dh

dt
on z 5he2cr2

(6)

p50 on r 5r a (7)

where r a is the radius of the circular disk. The equation for t
squeeze motion is obtained from~4!, ~5!, and~6! as

E
0

he2cr2

u dz52
r

2

dh

dt
. (8)

As the film is thin, it is reasonable to take the inertia forces
constant across the film and hence the inertia terms in Eq.~3! are
approximated by the mean value averaged across the film th
ness as

r

he2cr2 E
0

he2cr2S ]u

]t
1u

]u

]r
1w

]u

]zDdz52
]p

]r
1

]t rz

]z
(9)

which is rewritten using Eqs.~4!–~6! as

r

he2cr2 F ]

]t E0

he2cr2

u dz1S ]

]r
1

1

r D E
0

he2cr2

u2 dzG
52

]p

]r
1

]t rz

]z
. (10)

Introducing the modified pressure gradientf e as

f e5
]p

]r
1

r

he2cr2 F ]

]t E0

he2cr2

u dz1S ]

]r
1

1

r D E
0

he2cr2

u2 dzG ,

(11)
Eq. ~10! gives

f e5
]t rz

]z
. (12)

Sincef e is independent ofz, integrating Eq.~12! with respect toz
and using~1!, ~5!, and ~6!, the radial velocity component is ob
tained as

u5
1

m F f ez

2
~z2he2cr2

!1
k fe

3

8
$2z424he2cr2

z3

13h2e22cr2
z22h3e23cr2

z%G . (13)

Substituting Eq.~13! in ~8!, the equation satisfied by the modifie
pressure gradientf e is obtained as

kh5e25cr2

40
f e

31
h3e23cr2

6
f e5r

dh

dt
. (14)
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In terms of the following dimensionless quantities

r * 5
r

r a
, z* 5

z

h0
, w* 5

w

W0
,

u* 5
uh0

r aW0
, h* 5

h

h0
, T5

tW0

h0
,

f e* 5
f eh0

3

mr aW0
, p* 5

ph0
3

mr a
2W0

, d5kS mr aW0

h0
2 D 2

,

c̄5cra
2, Re5

rh0W0

m
(15)

Eqs.~14!, ~13!, and~11! are obtained as

d f e*
3h* 5e25c̄r* 2

40
1

f e* h* 3e23c̄r* 2

6
2r *

dh*

dT
50 (16)

u* 5
d f e*

3

8
~2z* 424h* e2 c̄r* 2

z* 313h* 2e22c̄r* 2
z* 2

2h* 3e23c̄r* 2
z* !1

f e*

2
~z* 22h* e2 c̄r* 2

z* ! (17)

]p*

]r *
5 f e* 2

Re

h* e2 c̄r* 2 F ]

]T E0

h* e2 c̄r* 2

u* dz*

1S ]

]r *
1

1

r * D E
0

h* e2 c̄r* 2

u* 2 dz* G (18)

whereh0 is the initial central film thickness,W0 is the character-
istic velocity of the curved plate, and Re is the Reynolds numb
Substituting foru* from ~17! in ~18!, the dimensionless radia
pressure gradient is given by

]p*

]r *
5 f e* 2

Re

h* e2 c̄r* 2 F2
r *

2

d2h*

dT2 1 f e*
] f e*

]r *
h* 5

3e25c̄r* 2S 1

60
1

dh* 2e22c̄r* 2
f e*

2

105
1

d2h* 4e24c̄r* 2
f e*

4

960
D

2 c̄ f e*
2h* 5e25c̄r* 2S 1

12
1

dh* 2e22c̄r* 2
f e*

2

30

1
d2h* 4e24c̄r* 2

f e*
4

320
D 1

f e*
2h* 5e25c̄r* 2

r *

3S 1

120
1

dh* 2e22c̄r* 2
f e*

2

420
1

d2h* 4e24c̄r* 2
f e*

4

5760
D G (19)
NOVEMBER 2001, Vol. 68 Õ 945



F
ig

.
2

R
ad

ia
lp

re
ss

ur
e

di
st

rib
ut

io
n

fo
r

di
ffe

re
nt

am
pl

itu
de

s
of

si
nu

so
id

al
sq

ue
ez

e
m

ot
io

n
„
nu

m
er

ic
al

…
;

T
Ä

0.
8;

--
--

--
-d

1
Ä

1.
0;

d
1
Ä

0.
0

946 Õ Vol. 68, NOVEMBER 2001 Transactions of the ASME



Journal of
Fig. 3 Effects of curvature on radial pressure distribution „numerical … «Ä0.2, TÄ0.8; d1Ä0.0;
d1Ä10
.
g

i

It is observed that the radial pressure gradient in the n
Newtonian squeeze film obtained from Eq.~19! for the case of a
flat circular disk (c̄50.0) is identical to the result presented b
Hashimoto and Wada@2#.

The pressure distributionp* , is obtained by integrating Eq
~19! and this requires a knowledge of the modified pressure
dient f e* . This is obtained by solving Eq.~16! for f e* . The radial
and the axial velocity in the squeeze film are then obtained fr
~17! and ~4!, respectively.

3 Approximate Analytical Solution
A perturbation method is employed to determine the dimens

less squeeze film pressure. The dimensionless pressurep* , the
dimensionless modified pressure gradientf e* and the radial veloc-
ity componentu* are expanded for 0<Re,1 as

f e* 5~ f e001d f e01!1Re~ f e101d f e11!1O~Re2! (20)

p* 5~p001dp01!1Re~p101dp11!1O~Re2! (21)

u* 5~u001du01!1Re~u101du11!1O~Re2!. (22)

Substituting~20!, ~21! and~22! in ~16! and~19! and equating the
like powers of Re, and using the boundary condition onp* , the
solution under the assumption21,d,1 is obtained as
Applied Mechanics
on-

y

ra-

om

on-

f e005
6r *

h* 3e23c̄r* 2

dh*

dT
(23)

p005
~e3c̄r* 2

2c3c̄!

c̄h* 3

dh*

dT
(24)

f e0152
162r * 3

5h* 7e27c̄r* 2 S dh*

dT D 3

(25)

p0152
81

35h* 7 S dh*

dT D 3F1

c̄
~r * 2e7c̄r* 2

2e7c̄!2
1

7c̄2 ~e7c̄r* 2
2e7c̄!G

(26)

f e1050 (27)

p105
1

4h* S ec̄r* 2
2ec̄

c̄
D S d2h*

dT2 D2
3

20h* 2 S e2c̄r* 2
2e2c̄

c̄
D S dh*

dT D 2

2
3

20h* 2 ~r * 2e2c̄r* 2
2e2c̄!S dh*

dT D 2

(28)

f e1150 (29)
NOVEMBER 2001, Vol. 68 Õ 947



v
v

a

s

h

l

t

d

p

n

r

n
u

in
Flu-

in

-
or-

ze

ze

ll

s.

al

ull.

g

long
r a

eal
tact
that
cur-
tant
a-

he

ogy
ob-
arch

6,
p115
27

35h* 6 S dh*

dT D 4H S r * 4e6c̄r* 2
2e6c̄

6
D 1S r * 2e6c̄r* 2

2e6c̄

36c̄
D

2S e6c̄r* 2
2e6c̄

216c̄2 D J (30)

Thus, the pressure distribution is obtained from~21!, ~24!, ~26!,
~28! and ~30! as

p* 5
1

h* 3 S dh*

dT D S e3c̄r* 2
2e3c̄

c̄
D

2
81d

35h* 7 S dh*

dT D 3F S r * 2e7c̄r* 2
2e7c̄

c̄
D 2S e7c̄r* 2

2e7c̄

7c̄2 D G
1ReF 1

4h* S d2h*

dT2 D S ec̄r* 2
2ec̄

c̄
D

2
3

20h* 2 S dh*

dT D 2S e2c̄r* 2
2e2c̄

c̄
D 2

3

20h* 2 S dh*

dT D 2

3~r * 2e2c̄r* 2
2e2c̄!1

27d

35h* 6 S dh*

dT D 4H S r * 4e6c̄r* 2
2e6c̄

6
D

1S r * 2e6c̄r* 2
2e6c̄

36c̄
D 2S e6c̄r* 2

2e6c̄

216c̄2 D J G1O~Re2! (31)

For a given motion of the upper curved disk, equation~31! gives
the pressure distribution in the curved squeeze film for small
ues of the parameterd ~characterizing the non-Newtonian beha
ior of the liquid lubricant! and the squeeze Reynolds number R

4 Results and Discussion
The approximate analytical solution presented above is v

for small values of the parametersd and the squeeze Reynold
number Re. For other values of these parameters, the equa
~16! and ~19! are solved numerically for radial pressure distrib
tion for given sinusoidal motion of the upper curved di
(h* (T)511e sinT). It is observed that~Figures 2, 3!
~i! the pressure distribution for pseudoplastic fluids is less t
that for Newtonian fluids for both flat and curved squeeze film
~ii ! with the increase of the curvature parameter, the pressure
tribution increases for the concave disk and the reverse tren
noted for convex disks,
~iii ! the changes in pressure due to inertia effects, though sma
not negligible,
~iv! film pressure increases with the increase in amplitude and
increase is enhanced by the fluid inertia effects.

It is worth mentioning that the paper combines elegantly
method of averaged inertia or modified lubrication theory for no
Newtonian squeeze films and the small perturbation metho
treat lubricant inertia and presents the general solution for
velocity components and the radial pressure gradient in a n
Newtonian curved squeeze film, for a given motion of the up
curved moving surface. The numerical results indicate a mar
influence of fluid inertia, pseudoplasticity of the lubricant and t
curvature of the upper curved disk on the pressure distributio
the squeeze film.
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Large Deflection Analysis of a
Biomimetic Lobster Robot Antenna
due to Contact and Flow

T. G. Barnes
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02115

N. E. McGruer
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Lobsters use their antennae to navigate among obstacles a
the ocean floor. Effective ambulation requires that the lobster, o
biomimetic lobster robot whose behavior is patterned after a r
lobster, must distinguish between antenna bending due to con
and bending due to flow. The analysis presented here shows
the key feature appears to be the taper of the antennae. The
vature of a tapered antenna due to an end-load is nearly cons
whereas the curvature distribution due to flow is nearly a qu
dratic function of the arc-length measured from the tip of t
antenna. @DOI: 10.1115/1.1406955#

Introduction
Biomimetics is an emerging branch of science and technol

in which synthetic systems are developed using information
tained from biological systems. The authors are part of a rese
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov.
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effort to design and construct a biomimetic lobster robot~Fig. 1!.
These underwater ambulatory vehicles are to be used to searc
and destroy mines in the littoral zone. The robot design and
behavior mimics those of lobsters which have evolved over m
hundreds of thousands of years to optimize their search for f
on the ocean floor. Lobsters use both their sight and their anten
in order to navigate the rocky and uneven sea floor in the coa
area. However, experiments have shown that blindfolded lobs
can navigate well by using their antennae alone~@1#!. When the
end of an antenna touches an obstacle, the contact force caus
antenna to bend.It is the bending of the antenna which the lobst
uses to sense the nearby obstruction. On the other hand, wate
flow due to surf or currents will also cause these flexible anten
to bend, often to the same degree as when contacting an obs
How then does a lobster distinguish antenna bending due to
tact and bending due to flow? How do we design the biomime
lobster robot so that it can distinguish between contact and flo
It was an attempt to answer these questions which motivated
investigation.

Antenna Design
The design of the lobster robot antenna is based on that of a

lobster antenna, specifically the function that it serves as a sen
device to detect contact with an obstacle. Each antenna is c
posed of two halves of machined PVC sheets, each of which is
mils thick with a milled slot 10 mils deep~@2#!. The bending
sensors and flexible circuit are sandwiched in the slot between
two halves which serves as a housing to isolate the sensors
circuit from the sea water~Fig. 2!. The antenna design has
tapered width in order to mimic the antennae of a real lobster.
will be shown later in this note, it is the taper which is the cruc
feature which allows the lobster to distinguish between bend
due to contact and bending due to flow. There are three ben
sensors, one at each of three points on the antenna axis~Fig. 2!.

Fig. 1 A biomimetic lobster robot

Fig. 2 PVC antenna with bending sensors and a flexible circuit
Journal of Applied Mechanics
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Each sensor is a simple switch which is either open or clo
depending upon whether or not the local curvature exceed
threshold value.

Analysis
The slope of the bent antenna can be quite large and so

analysis of the antenna deformation requires the use of the la
deflection and small material strain theory known as theelastica
~@3#!. These calculations will determine the relationship betwe
the antenna curvature and the magnitude and direction of the
load and water flow. In order to simplify the analysis and nume
cal computations, anx-y coordinate system~with arc-length co-
ordinates! is placed at the tip of the antenna as shown in Fig.
whereas theX-Y-axes are attached to the fixed end. In Fig. 3,a is
the angle between the end-loadP and theY-axis, b is the angle
between the direction of water flow and theY-axis, f(s) is the
angle between the tangent to the curve and thex-direction~tangent
to the free end!, andfL is the angle of rotation of the free end o
the antenna.

From Frisch-Fay@3# the moment-curvature equation for th
elastica is given by

EI
df

ds
5M (1)

in which E is the Young’s modulus,I is the second moment of the
cross-sectional area, andM is the internal bending moment. Tak
ing the derivative of~1! with respect to the arc-length coordinat
gives

EI
d2f

ds2 1E
dI

ds

df

ds
5

dM

ds
5V (2)

in which V is the internal shearing force,I 5
1

12 wt3, where w
5w(s) and t are the width and thickness respectively of the a
tenna cross section. For this uniformly tapered antennadI/ds is
constant. Equation~2! is subject to the boundary conditions o
zero angular rotation and vanishing bending moment, i.e.,

f~0!50,
df

ds
~0!5

P cos~a2fL!

EdI/ds
. (3)

It is noted that the first of these conditions is a consequence of
choice of thex-y coordinate system. The second condition gives
nonzero curvature at the free end due to the vanishing value
both the moment and the second moment of the area at that p
It is noted that the lobster moves slowly~several cm/s! and its
antennae are very flexible and highly damped due to the surrou
ing sea water. Thus the effect of antennae vibration induced
sudden contact with an obstacle is negligible.

Fig. 3 An antenna acted upon by an end-load and by water
flow
NOVEMBER 2001, Vol. 68 Õ 949
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It is now necessary to relate the internal shear force (V) to the
contact force and pressure due to the water flow using equilibr
and a simplified description of the water flow. The use of a dr
coefficient~@4#! for the component of the flow normal to the an
tenna leads to the force per unit length acting perpendicular to
antennae (12 CDr@U cos(f82fL2b)#2w8) at s5s8. This quantity
is then integrated and combined with the shear force contribu
due to the end-load in order to obtain

V~s!5P cos~a2fL1f!1
1

2
CDrU2

3E
0

s

w8 cos2~f82fL2b!cos~f2f8!ds8 (4)

whereCD is the drag coefficient,r is the water density,U is the
flow speed,b is the flow angle,f85f(s8), and w85w(s8).
Equations~2! and~4! can be readily combined in order to obtain
second-order nonlinear differential equation forf which is subject
to the two boundary conditions~3!. These equations were solve
numerically using standard software for the solution of ordina
differential equations. Note that the choice of thex-y coordinate
system has allowed this equation to be solved as an initial va
problem, rather than as a boundary value problem. After determ
ing f(s) it is a simple matter to determine the curvaturedf/ds at
any point.

Results and Discussion
The antenna is 11.12 mm wide at the base, 0.327 m long,

1.016 mm thick. The Young’s modulus of PVC is 2.2 GPa. Resu
are shown in Fig. 4 for the tip angle (fL) as a function of the
end-load angle~a!, for various values of the end-load~P! and with
zero flow velocity. The tip angle vanishes fora5290 deg which
corresponds to an axial tensile load. The tip angle also vanis
for a590 deg which corresponds to an axial compressive lo
provided thatP is less than the buckling load (Pcr). Thus for
sufficiently largeP, the results are multivalued ifa.90 deg with
the upper branch representing stable equilibrium. Note that
small P the maximum tip angle occurs whena is close to zero,
i.e., when the load is perpendicular to the initial beam configu
tion. However, as the load increases the maximum value offL
occurs for progressively larger values ofa due to the effect of the
tip rotation on the deflection.

Results are shown in Fig. 5 for the tip angle (fL) as a function
of the flow angle~b!, for various values of the flow-speed~U! and
with a vanishing end-load. Again the tip angle vanishes wh
b5690 deg with an instability occurring now for large flow

Fig. 4 Maximum deflection angle versus angle of applied load
for various values of the applied load and with zero flow
950 Õ Vol. 68, NOVEMBER 2001
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speeds andb near290 deg. For low flow speeds the maximum t
angle occurs whenb is close to zero, but due to the nonlineari
the maximum tip angle occurs for increasingly negative values
b.

It is the curvature of the antenna, at the locations of the th
sensors, which will activate the sensors. Thus Fig. 6 shows
variation of the antenna curvature with arc-length coordinats
~measured from the fixed end! for various flow speeds~with b50
and P50! and contact forces~with a50 andU50!. Under the
action of an end-load, the curvature at the free end is not zer
previously discussed and is not monotonic with the applied lo
The latter result is due to the nonlinear effect associated with
rotation of the end under increasing applied load. An increas
the applied load does not produce a proportional increase in
vature because the angle of rotation (fL) also increases (3)2 . It is
noted that it is possible to use a prescribed displacement boun
condition or a prescribed end-load condition. Either family
curves would contain the same essential information. Also n
the dramatic difference in curvature distribution for contact a
for flow. For contact the curvature distribution is nearly consta
For flow the curvature is zero at the free end and increases ne
quadratically to a maximum at the fixed end.

A simple linear analysis for a transverse end-load shows
the curvature~df/ds in Eq. ~1!! for a taperedbeam is exactly
constant because both the bending moment~M! and the second
moment of the area~I! increase linearly with distance from th

Fig. 5 Maximum angle of deflection versus angle of flow for
various flow speeds and with vanishing end-load

Fig. 6 Curvature along the antennae for various flow rates and
applied end loads
Transactions of the ASME
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free end. However, for flow the linear analysis gives a linea
varying load per unit length which yields a cubic distribution
internal moment and a quadratic distribution of curvature. N
consider aconstantcross-section antenna. The curvature and
ternal moment are linear functions of position for the end-load
quadratic functions of position for flow. Hence the tapered
tenna is more capable of distinguishing between deformation
to contact and deformation due to flow, than is the uniform
tenna. The nonlinear theory used in this paper is necessary d
the large angles of rotation. Nonetheless it is still true that, fo
tapered antenna, the distribution of curvatures due to contact
flow differ greatly and allows the lobster robot to distinguish b
tween antenna deflections due to contact and deflections du
flow.
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A New Approach to Nonlinear
Oscillations

B. Wu
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This paper deals with nonlinear oscillation of a general sing
degree-of-freedom system. By combining the linearization of
governing equation with the method of harmonic balance, we
tablish two analytical approximate formulas for the period. The
two formulas are valid for small as well as large amplitudes
oscillation. @DOI: 10.1115/1.1406960#

Introduction
The widest used analytical techniques to solve nonlinear os

lations are the perturbation methods~Nayfeh @1# and Mickens
@2#!. However, an analytical approximate solution given by t
perturbation methods has, in most cases, a small range of val
In some cases, one may apply the method of harmonic balan
obtain an analytic approximate solution~@1–3#!, which is valid
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even for strongly nonlinear systems. But it is difficult to giv
high-order analytical approximate formulas by applying t
method. Therefore one needs to develop some analytical t
niques which can overcome the above-mentioned difficulties.

Consider a single-degree-of-freedom system governed by

d2u

dt2
1 f ~u!50, u~0!5b,

du

dt
~0!50. (1)

Let F(u)5* f (u)du be the potential energy of the system a
suppose it arrives at its minimum atu5u0 , called a center. We
may assumeu050. For the special case off (u) being odd func-
tion of u, Agrwal and Denman@4# and Liao and Chwang@5#
applied the weighted linearization method and the homoto
analysis method, respectively, to establish analytical approxim
formulas for the period. In this paper we consider the case off (u)
being a general function ofu, then the system will oscillate be
tween asymmetric limits@a,b# where botha andb have the same
energy level, i.e.,F(a)5F(b).

A new approximate method will be presented to solve Eq.~1!.
By combining the linearization of governing equation with th
method of harmonic balance, we establish two analytical appr
mate formulas for the period. These two formulas are valid
small as well as large amplitudes of oscillation.

Solution Method
A new independent variable,t5pt, is introduced, Eq.~1! be-

comes

p2u91 f ~u!50, u~0!5b, u8~0!50 (2)

where a prime denotes differentiation with respect tot. The new
independent variablet is chosen in such a way that the solution
Eq. ~2! is a periodic function oft, of period 2p. The correspond-
ing period is given byT52p/p.

Let u0(t) be an approximation tou(t), which is a periodic
function of t, of period 2p, and satisfies initial conditions in Eq
~2!. The idea is to express the periodic solution of Eq.~2! with the
assigned initial conditions in the formu0(t)1v(t), which is
composed of the harmonics of the motion. Here,u0(t) is the main
part andv(t) is the correction part. Thenv(t) is assumed to
satisfy, via linearization of Eq.~2!, the following equation:

p2u091 f ~u0!1p2v91 f u~u0!v50, v~0!50, v8~0!50.
(3)

Solving the resulting linear Eq.~3! in v, by the method of har-
monic balance, will give the approximate period and correspo
ing periodic solution.

Note that the trajectories around the center are not necess
symmetric with respect to the center. Thus the motion appear
drift as the amplitude increases: The midpoint of the motion is
the center. Following the fact above, a reasonable and simple
tial approximation satisfying initial conditions in Eq.~2! is given
by

u0~t!5
b1a

2
1

b2a

2
cost (4)

where fort5p, u0(t) arrives at the minimuma of u(t). Based
on the selection ofu0(t), v(t) should satisfy, in addition initial
conditions in Eq. ~3!, v(p)50. We expand f @u0(t)# and
f u@u0(t)#, respectively, into the Fourier series oft:

f @u0~t!#5
a0

2
1(

i 51

`

ai cos~ i t!,
(5)

f u@u0~t!#5
b0

2
1(

i 51

`

bi cos~ i t!.

First, we take
7,
001 by ASME NOVEMBER 2001, Vol. 68 Õ 951
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v~t!5c0@12cos~2t!#. (6)

Substituting Eqs.~5! and ~6! into Eq. ~3!, equating the constan
term and the coefficient of cost to zeros, respectively, and solvin
the set of resulting equations forp andc0 , we can obtain the first
approximation to periodT:

T152pH 2

b2a Fa12
a0~b12b3!

2~b02b2! G J 21/2

. (7)

Next, we take

v~t!5c0@12cos~2t!#1c1@cost2cos~3t!#. (8)

Substituting Eqs.~5! and ~8! into Eq. ~3!, equating the constan
term, the coefficients of cost and cos 2t to zeros, respectively
and solving the set of resulting equations forp, c0 , andc1 , leads
to the second approximation to periodT:

T252pF2B6~B224AC!1/2

2A G21/2

(9)

where

A58@~b2a!~b12b3!22a0#,

B5@~b02b2!~b32b5!2~2b22b02b4!~b12b3!#~a2b!

216a1~b12b3!12a0~5b022b223b4!14a2~b02b2!,

C52a1~b02b2!~b32b5!1~b02b4!@a0~2b22b02b4!

22a2~b02b2!#1~b12b3!@a0~b32b5!12a1~2b22b02b4!

12a2~b12b3!#.

The sign beforeAB224AC in Eq. ~9! should be determined by
the condition that the ratioT2 /T1 is near 1 asb tends to 0. High-
order approximations for periodT can be established in a simila
way.

Example
We take the oscillator with second-order nonlinearity as an

ample to illustrate the use and the effectiveness of the propo
approach. The motion equation is

d2u

dt2
1u1u250, u~0!5b,

du

dt
~0!50. (10)

For this problem,f (u)5u1u2, f u(u)5112u. The Fourier
series expansions off @u0(t)# and f u@u0(t)# are given in Eq.~5!
where a05b1a1(b1a)2/21(b2a)2/4; a15(b2a)(11b
1a)/2; a252(b2a)2/8; b052(11b1a); b15b2a; ai 11
5bi50(i 52,3, . . . ). Substitution of the these coefficients in
Eqs. ~7! and ~9!, respectively, gives two analytical approxima
formulas to the periodT:

T152pF8112a112b15a2114ab15b2

8~11a1b! G21/2

(11)

and

T252pF2B01~B0
224A0C0!1/2

2A0
G21/2

(12)

where

A0524~a216ab1b214a14b!,

B052~11a1b!~3a2114ab13b2110a110b!,

C05~b2a!4/422~11a1b!~a212ab1b212a12b!.

For the oscillation equation, the approximate periods obtai
by the perturbation method and the method of harmonic bala
using single-mode approximation are, respectively,
952 Õ Vol. 68, NOVEMBER 2001
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Tp52pS 11
5

12
b2D (13)

and

Th52p~11a1b!21/2. (14)

The exact period is

Te52E
a

bFb22u21
2

3
~b32u3!G21/2

du. (15)

For comparison, the exact period in Eq.~15! and the approxi-
mate periods computed, respectively, by Eqs.~11!, ~12!, ~13!, and
~14! are pictured in Fig. 1. For the oscillator, the maximum osc
lation amplitude should satisfyb,0.5 ~for b50.5, Eq.~10! has a
homoclinic orbit with period1`!. Figure 1 indicates that formu
las ~11! and~12! are more exact than formulas~13! and~14!, and
can give very good approximate periods for both small and la
values ofb.

Conclusions
We have presented a new method to solve nonlinear oscilla

of a general single-degree-of-freedom system. The equatio
motion need not contain a small parameter. Unlike the class
harmonic balance method, linearization is performed prior to p
ceeding with harmonic balancing thus resulting in linear algebr
equations instead of nonlinear algebraic equations. Hence, we
able to establish these approximate analytic formulas for the e
solution. These approximate solutions are valid for small as w
as large amplitudes of oscillation.
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Three-Dimensional Field Equations of
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Arbitrary Curvature and
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Equations of motion and energy functionals are derived fo
three-dimensional coordinate system especially useful for ana
ing the static and dynamic behavior of arbitrarily thick shells
revolution having variable thickness. The field equations are
lized to express them in terms of displacement components.
@DOI: 10.1115/1.1406961#

Introduction
Dozens of books~cf. Leissa@1#! and scores of published pape

exist which derive field equations, equations of motion, and
energy functionals for thin or moderately thick shells of revo
tion. Such derivations typically make simple kinematic assum
tions about the variation of the displacements through the th
ness. This reduces the three-dimensional theory to a t
dimensional one characterized by the middle surfa
displacements. But for thicker shells or higher frequencies~short
wave lengths!, a three-dimensional analysis is necessary.

This work presents a summary of applicable equations for
three-dimensional analysis of shells of revolution with arbitra
curvature and arbitrary, variable thickness. They are expresse
terms of a curvilinear~f,z,u! coordinate system, as shown in Fi
1, which is a particularly useful one. They were derived by ten
analysis, relating all quantities to the shell middle surface~z50!.
Much of the relevant derivation is available in the dissertation
the first author~Kang @2#!. And they have been used successfu
to obtain accurate results for some three-dimensional vibra
problems~Kang and Leissa@3,4#!.

Equations of Motion
Utilizing the general equations in tensorial form, and relati

them to the shell midsurface, the equations of motion in term
the stress components (s i j ) are found to be~Kang @2#!

sfz,z1
1

r z
@sfu,u1sfz sinf1~sff2suu!cosf#

1
1

rz
~sff,f12sfz!1 f f5rüf , (1a)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2000; final revision, May 24, 2001. Associate Editor: R. C. Benson.
Copyright © 2Journal of Applied Mechanics
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szz,z1
1

r z
@szu,u1~szz2suu!sinf1sfz cosf#

1
1

rz
~sfz,f2sff1szz!1 f z5rüz , (1b)

szu,z1
1

r z
~suu,u12szu sinf12sfu cosf!

1
1

rz
~sfu,f1szu!1 f u5rüu (1c)

whereuf , uz , anduu ~circumferential! are displacement compo
nents;rz[r11z andr z[(r21z)sinf, with r1 andr2 being the
principal radii of curvature of the midsurface~Fig. 1!; and r is
mass density per unit volume. The commas and dots are the
ventional space and time derivatives.

Assuming a linearly elastic, isotropic material, the stress-str
equations are

sff5l«12G«ff , szz5l«12G«zz , suu5l«12G«uu ,

(2)
sfz52G«fz , sfu52G«fu , szu52G«zu ,

where l and G are the Lame´ coefficients, and«[«ff1«zz
1«uu . The strain-displacement equations are found to be

5,

Fig. 1 Cross section of an arbitrary shell of revolution with
variable thickness in the meridional direction f and positive
Gaussian curvature, and the curvilinear coordinate system
„f,z,u…
001 by ASME NOVEMBER 2001, Vol. 68 Õ 953



ting
f

«ff5
1

rz
~uf,f1uz!, «zz5uz,z ,

«uu5
1

r z
~uu,u1uf cosf1uz sinf!,

«fz5
1

2 Fuf,z2
1

rz
~uf2uz,f!G , (3)
a

u

954 Õ Vol. 68, NOVEMBER 2001
«fu5
1

2 F 1

r z
~uf,u2uu cosf!1

uu,f

rz
G ,

«zu5
1

2 F 1

r z
~uz,u2uu sinf!1uu,zG .

Assuming the material to be homogeneous, and substitu
Eqs.~2! and~3! into ~1! yields the equations of motion in terms o
displacement components:
lFuz,fz

rz
1

1

rz
2 ~uz,f1uf,ff!2

r1,f

rz
3 ~uf,f1uz!1

1

r zrz
$uu,fu1~uz,f2uf!sinf1~uf,f1uz!cosf%

2
cosf

r z
2 ~uu,u1uz sinf1uf cosf!G1GFuf,zz1

uf,z sinf

r z
2

1

r z
2 $~3uu,u12uz sinf12uf cosf!cosf2uf,uu%

1
1

r zrz
$uu,fu1~uz,f2uf!sinf12~uf,f1uz!cosf%1

1

rz
~uz,fz1uf,z!

1
1

rz
2 ~3uz,f2uf12uf,ff!2

2r1,f

rz
3 ~uf,f1uz!G1 f f5rüf , (4a)

lFuz,zz1
1

r z
~uu,zu1uz,z sinf1uf,z cosf!2

sinf

r z
2 ~uu,u1uz sinf1uf cosf!1

1

rz
~uf,fz1uz,z!2

1

rz
2 ~uf,f1uz!G

1GF2uz,zz1
1

r z
~uu,zu12uz,z sinf1uf,z cosf!1

1

r z
2 $uz,uu2~3uu,u12uz sinf12uf cosf!sinf%1

cosf

r zrz
~uz,f2uf!

1
1

rz
~2uz,z1uf,fz!1

1

rz
2 ~uz,ff23uf,f22uz!1

r1,f

rz
3 ~uf2uz,f!G1 f z5rüz , (4b)

lFuz,zu

r z
1

1

r z
2 ~uu,uu1uz,u sinf1uf,u cosf!1

1

r zrz
~uf,fu1uz,u!G1GFuf,zz1

uu,z

rz
1

uu,ff

rz
2 2

r1,f

rz
3 uu,f 1

1

r zrz
~uz,u1uf,fu

1uu,f cosf!1
1

r z
~uz,zu1uu,z sinf!1

1

r z
2 $2uu,uu1~3uz,u2uu sinf!sinf1~3uf,u2uu cosf!cosf%G1 f u5rüu . (4c)
of
ta-

ol-
oc.

ck
The correctness of Eq.~4! was verified by means of Maple,
symbolic logic computer program. Exact solutions of Eq.~4! are
possible for some constant or variable thickness shell config
tions, such as circular cylindrical or conical. They may also
useful in using some approximate methods~e.g., Galerkin, finite
differences!.

Energy Functionals
For other approaches to the problem~e.g., Ritz, finite element!

it is desirable to have the energy functionals corresponding to
~4!. The strain energy due to deformation is the volume interg

V5
1

2 EV
~sff«ff1szz«zz1suu«uu12sfz«fz12sfu«fu

12szu«zu!rzr zdfdzdu (5)

with rz andr z given previously. Substituting Eqs.~2! and~3! into
~5! results in

V5
1

2 EV
@l~k11k21k3!21G$2~k1

21k2
21k3

2!

1k4
21k5

21k6
2%#rzr zdfdzdu, (6)

where
ra-
be

Eq.
ral

k1[
uf cosf1uz sinf1uu,u

r z
, k2[

uz1uf,f

rz
,

k3[uz,z , k4[
uf2uz,f

rz
2uf,z ,

k5[
uz,u2uu sinf

r z
1uu,z , k6[

uf,u2uu cosf

r z
1

uu,f

rz
.

The kinetic energy~T! is simply

T5
1

2 EV
r~ u̇f

2 1u̇z
21u̇u

2!rzr zdfdzdu. (7)
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Torsion of a Circular Compound Bar
With Imperfect Interface

T. Chen
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The Saint-Venant torsion problem of a circular cylinder reinforc
by a nonconcentric circular bar of a different material with a
imperfect interface is studied. Conformal mapping together wit
Laurent series expansion are employed to analyze the prob
The jump condition in either the warping function or the she
traction, characterizing the imperfect interface, is simulated in
transformed domain in an exact manner. Unlike the problem w
perfectly bonded interface, the series solution has to be reso
by a truncation. Numerical illustrations are provided for the to
sional rigidity of the cross section. In the case of perfect bond
case, our results agree with that reported in Muskhelishv
@DOI: 10.1115/1.1406962#

1 Introduction
Benveniste and Chen@1# recently proved that, in Saint-Venant

torsion problem of compound bars, thin interphases with eit
low or high stiffness between the phases lead to two differ
types of imperfect interface conditions. The first type involve
jump in the warping displacement, the other in the shear tract
The jump quantity is characterized by a scalar interface param
which measures the degree of the imperfect bond. Understan
the degree of imperfect bonding on the torsional rigidity is ess
tial in designing compound bars under torsion. The study of
effect of imperfect interface in torsion problems seems to be
explored by Lipton@2#, in which the spring-type interface, de
scribing a jump in the warping displacement, was employed
find the optimal fiber configurations for the torsional rigidity. Be
veniste and Chen@1# later showed that imperfect interfaces can
used to design so-called ‘‘neutral inhomogeneities’’ in torsi
problems. These are cylindrical inhomogeneities which can
introduced in a host bar without disturbing the warping functi
and possibly the torsional stiffness of the host bar. The pre
work is concerned in providing a most typical benchmark so
tion: an eccentric reinforcing bar with an imperfect interface in
circular cylinder. The solution of the same boundary value pr
lem with perfect bonding conditions was first obtained by Vek
and Rukhadze@3# ~see also@4#!. We mention that in the context o
heat conduction, rigorous derivations of the interface conditi
have been given by Sanchez-Palencia@5# and Pham Huy and
Sanchez-Palencia@6#.

The displacement field of the Saint-Venant torsion is charac
ized byux52qyz, uy5qxz, anduz5qw(x,y), whereq is the
angle of twist per unit length of the bar andw is the warping
function to be determined. Equilibrium condition suggests thaw
is harmonic throughout the cross section of the cylinder.
Traction-free boundary condition on the lateral surface of the c
inder gives

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received and accepted by the ASME Applied Mechanics
vision, Oct. 4, 2000. Associate Editor: D. A. Kouris.
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dw

dn
52v•n on C (1)

where v52yi1xj and n denotes the outward normal to th
boundaryC of the cross sectionS. There are two types of interfac
conditions. The first kind, referred to as the LS type, is charac
ized by ~@1#!

D$m~¹w1v!•n%uG50, m1~¹w11v!•nuG52jDwuG , (2)

whereDq5q12q2 denotes the jump in a quantityq acrossG, m is
the shear modulus,n is the unit normal of the interface pointin
from phase 1 to 2, andj is the interface parameter. The other typ
of interface is called the HS type, in which on the interfaceG it
follows that ~@1#!

DwuG50, D$m~¹w1v!•n%uG5¹s@h~¹sw1v•s!#uG , (3)

whereh is the interface parameter and¹sw5¹w•s, s is the unit
tangential vector toG chosen as being rotated counterclockwi
from the normal vectorn. Perfect bonding interfaces correspon
to the limiting value ofj→` or h→0.

2 Torsion of a Circular Cylinder Reinforced by a Lon-
gitudinal Round Bar of a Different Material

To begin with, we define the cross section asS, consisting of
the regionS1 bounded by the circleG, and the regionS2 , bounded
by the same circleG and a circleC ~Fig. 1!. The circlesG andC
need not be concentric. Let the moduli of rigidity of the comp
nent bars bem1 andm2 in S1 andS2 , respectively. Suppose th
radii of the circlesG andC are respectively given byr 1 and r 2 ,
and the quantityl denotes the distance between their centersl
,r 22r 1). As in ~@4#!, we introduce the bilinear mapping functio

z5v~z!5
z

12az
, a5

l

A~r 1
22r 2

2!222l 2~r 1
21r 2

2!1 l 4
(4)

in which z5x1 iy and z5reiu. The mapping function~4! will
map the circlesG andC in the z-plane onto concentric circlesg1
andg2 in the z plane with radiir1 andr2(r1,r2). Specifically,
the regionS1 will correspond to the circles1 :uzu,r1 andS2 to
the circular rings2 :r1,uzu,r2 ~Fig. 1!, where

r15
A114r 1

2a221

2r 1a2 , r25
A114r 2

2a221

2r 2a2 . (5)

2.1 An LS-type Interface. For the LS-type interface, the
boundary and interface conditions need to be fulfilled byw1 and
w2 are ~1! and ~2!. Let c be the function conjugate tow so that

dw

dn
5

dc

ds
,

dw

ds
52

dc

dn
(6)

hold on the contourG andC. In terms of conjugate functions, Eqs
~1! and ~2! become

c25g1const.uC , m2c22m1c15~m22m1!g1const.uG ,
(7)

m1

d2

ds2 ~c12g!52jS dc2

dn
2

dc1

dn D U
G

,

where the functiong is defined as

g[
1

2
~x21y2!, 2v•n5

dg

ds
. (8)

Let F(z)5w1 ic be the complex torsion function and letf (z)
5w1 ic be the same function in thez plane. Letf 1 and f 2 be the
values of this functions ins1 ands2 . Then one will have

Di-
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Fig. 1 Mapping from the eccentric cylinder to a circular compound cylinder
`
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m-
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f 1~z!5(
k50

~ak81 ibk8!zk, in s1 ,

(9)

f 2~z!5 (
k52`

`

~ak91 ibk9!zk, in s2 ,

whereak8 , bk8 , ak9 , andbk9 are some unknown real constants to
determined. Lettingz5reiu in ~9! one finds

c15b081(
k51

`

~ak8 sinku1bk8 cosku!rk, in s1 ,

(10)

c25b091(
k51

`

@~rkak92r2ka2k9 !sinku

1~rkbk91r2kb2k9 !cosku#, in s2 .

To proceed, we note that due to the conformality of the m
ping function there follows

d

dsU
z

5Udz

dzU d

rduU
z

,
d

dnU
z

5Udz

dzU d

drU
z

, (11)

where, by virtue of~4!, one can show that

Udz

dzU5122ar cosu1a2r2. (12)

Further, it was shown that the series converges absolutely fr
,1/a ~@1#!

g5
r2

12a2r2 F1

2
1(

k51

`

akrk coskuG[w~r,u!. (13)

Now substituting~10! and ~13! into ~7!, using ~11! and ~12!,
provides constraints for the determination of the unknown coe
cients. Specifically, we found thatak85ak95a2k9 50, a085a095b08
5b0950 and
Vol. 68, NOVEMBER 2001
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ffi-

bk95
@c22~12l!c1ak#ak212lakbk8

12ak ,
(14)

b2k9 52
@c22~12l!c1#ak212lbk8

12ak r1
2k ,

wherel5m1 /m2 , a5(r1 /r2)2 andc1 andc2 are the distances
of the centers ofG andC from the origin given by

c15
ar1

2

12a2r1
2 , c25

ar2
2

12a2r2
2 , (15)

so thatl 5c22c1 . In summary, one obtains

w1~r,u!52(
k51

`

bk8r
k sinku, (16)

in s1 and

w2~r,u!5(
k51

`

~b2k9 /r2k2bk9!rk sinku, (17)

in s2 . The only unknown coefficientsbk8 are determined from the
relations

2a@~k11!bk118 1~k21!r1
22bk218 #m1r1 /j

1Fkr1
21~11a2r1

2!m1 /j1~11l!
12nak

12ak Gbk8

5akr1m1 /j1~11l!F12nak

12ak c21n l
11ak

12akGak21, k>1,

(18)

where n5(m22m1)/(m21m1). The recurrence relation of~18!
constitutes a linear set of algebraic equations with an infinite nu
ber of unknowns, which can be resolved by truncation at a
Transactions of the ASME



-
t

-

o
h

t

e

e

le

is

t

desired order. By letting 1/j→0, the system can be exactly solve
without any trunction. In this case, the coefficientsbk8 reduce to
the simple form

bk85c2ak211 ln
11ak

12nak ak21, k>1 (19)

which exactly agrees with the result of Muskhelishvili@4#.

2.2 An HS-Type Interface. For the HS-type interface, the
conditions satisfied byw1 and w2 are ~1! and ~3!. In terms of
conjugate functions these can be written as

c25g1const.uC ,
dc1

dn
5

dc2

dn U
G

,

(20)

m1c12m2c21~m22m1!g5h
d

dn
~g2c!1const.U

G

.

Again we employ the Laurent series~10! in ~20!, using the
relations~13! and~11!. This will provide conditions for the deter
mination of the unknown coefficients. The final expression for
warping functionw1 remains the same as~16! in s1 , andw2 as

w2~r,u!5(
k51

`
c2ak21@~r1 /r!2k21#2@~r1 /r!2k1akbk8#

11ak rk

3sinku, (21)

in s2 . The unknown coefficientsbk8 are determined from the re
lation

Fhk~r1
221a2!r1 /m21~l11!

12nak

11ak Gbk82ha@~k21!r1
22bk218

1~k11!bk118 #r1 /m2

5hr1ak/m21~l11!S c2

12nak

11ak 1n l Dak21, k>1. (22)

Again, the system of~22! constitutes a linear set of equations f
the unknownsbk8 that need to be solved by a truncation. For t
perfect bonding case~h50!, the unknownsbk8 can be exactly
solved which again recover the form~19!.

3 Torsional Rigidity and Numerical Illustration
To illustrate the effect of imperfect interface we evaluate

torsional rigidity of the compound section. The torsional rigidityT
of the cross section can be shown as~@1#!

T5(
k51

2

mk~ I k1D0
~k!!1Tc , (23)

whereTc50 for an LS-type interface and

Tc5E
G
h@~¹w•s1v•s!~v•s!#ds, (24)

for an HS-type interface. In~23!, I k is the polar moment of intertia
of the regionSk with respect to the originO, and

D0
~k!5E E

Sk

S x
]wk

]y
2y

]wk

]x Ddxdy. (25)

To proceed, one may rewrite~25! as, applying the Green’s theo
rem,
Journal of Applied Mechanics
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D0
~1!52 R

G
w1~xdx1ydy!

52
1

2 R
G
w1d~x21y2!52 R

g1

w1~r1 ,u!dw~r1 ,u!,

(26)

D0
~2!52 R

g2

w2~r2 ,u!dw~r2 ,u!1 R
g1

w2~r1 ,u!dw~r1 ,u!,

which can be evaluated using~10!, ~16!, ~17!, and ~21!. Particu-
larly, for the LS type of interface, the torsional rigidity of th
compound bar is

TLS5
pm2

2
@r 2

41~l21!r 1
2~r 1

214c1
2!#

12pm2r1
2kFl l(

k51

`

ak21
kbk8

12ak2 l ~ l 1lc1!

3(
k51

`

a2k22
k

12ak2
~l21!

~a221!2 c1
2G . (27)

For the HS type of interface, one additional termTc needs to be
evaluated. In doing this, one rewritesTc in term of conjugate
function as, using~8!2

Tc5h R
G

d~g2c!

dn
•

dg

dn
ds. (28)

Using the relations~10!–~11! we can show that

Tc522hpr1~c1
21c1 /a!~ab1811!1hpc1(

k51

`

~21k

12c1a!ak21r1
2k21$kr1~11a2r1

2!~c1ak212bk8!2a@~k21!

3~c1ak222bk218 !1r1
2~k11!~c1ak2bk118 !#%. (29)

The torsional rigidity of the compound bar with HS interfac
can be derived as

THS5Tc1pm2H ~r 2
4/212c2

2r 2
2!1~l21!~r 1

4/21c1
2r 1

2!

2~11l!(
k51

` S c2

12nak

11ak 1n l D kak21r1
2kbk8

22c2
2(

k51

`
ka2k22r2

2k

11ak J . (30)

As a numerical illustration, we consider the following examp
in which r 152.0, r 255.0, m151.0, m252.0, l 52.8. In the case
that the interface is perfectly bonded, the torsional rigidity
given in Muskhelishvili~@4#, Eq. ~140a.14!!. For convenience, we
denote the quantity byTP . Forj5` or h50, our converged resul
for a 20-term approximation givesTP51789.63, which agrees

Table 1 The value TÕTP versus the interface parameter j or h

j or h TLS /TP THS /TP

0 .726985 1.0
0.01 .738333 1.00091
0.1 .809527 1.00897
0.5 .913686 1.04196
1.0 .948702 1.07813
5.0 .987909 1.27869

10 .993816 1.45879
100 .999369 4.04919

` 1.0 `
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with that of @4#. As expected, the warping displacement is an
symmetric with respect to the horizontal line and thusw50 on the
horizontal axis. To illustrate the influence of the interface para
eter on the effective torsional rigidity, numerical values of t
factorsTLS /TP and THS /TP are given in Table 1. The number
indicate that for the totally debonded casej50 the torsional rigid-
ity is 27 percent less than that of the perfect one, whereas foh
.102 the torsional rigidity will increase drastically to infinity. Th
physical behavior and mathematical explanation of the latter p
nomena was given in~ @1#!. Finally, it is mentioned that our resu
is also verified with a recently proven theorem by Lipton~@2#, Eq.
~1.7!! and Benvensite and Chen~@1#, Eqs. ~4.19,4.20!!. Specifi-
cally, the theorem states that for the considered compound cr
section, if the interface is of LS type and that the interface par
eter has a certain constant value, then the torsional rigi
remains a constant quantity valid for any position of the circu
bar.
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Discussion: ‘‘Shear Coefficients for
Timoshenko Beam Theory’’
„Hutchinson, J. R., 2001, ASME J.
Appl. Mech., 68, pp. 87–92…

N. G. Stephen
School of Engineering Sciences, Mechanical Engineeri
University of Southampton, Highfield,
Southampton SO17 1BJ, England

In a recent article, Hutchinson@1# employed the Hellinger-
Reissner variational principle to construct a beam theory of
moshenko type, together with a new expression for the inhe
shear coefficientk, as

k5
22~11n!

A

I y
2 C41nS 12

I x

I y
D (1)

where

C452EE$n~x22y2! f 112n x y f212~11n!~ f 1
21 f 2

2!%dxd y

(2a)
i
c

g
c

v

Copyright © 2Journal of Applied Mechanics
g,

Ti-
ent

f 15
21

2~11n! S ]x

]x
1

n x2

2
1S 22n

2 D y2D (2b)

f 25
21

2~11n! S ]x

]y
1~21n!xyD . (2c)

In the above, the notation is largely the same as that of Hu
inson except that Love’s notation~@2#! has been employed for th
beam cross-sectional coordinates, by replacingy by x, andz by y,
in @1#; z is then the beam axial coordinate. The motivation
Hutchinson appears to be the construction of a theory in which
shear coefficient takes on the ‘‘best’’ value; for beams of circu
and thin rectangular cross section, these are widely accepted
k56(11n)2/(7112n14n2), andk55(11n)/(615n), respec-
tively. The evidence to suggest that these values are ‘‘best’’ co
from comparison with available ‘‘exact’’ elastodynamic analys
and, to a lesser degree, from experiment, and is discusse
@1,3,4#.

Expression~1! derived by Hutchinson is exactly equivalent
one derived by the present author and Prof. Mark Levinson@3,4#
some two decades ago, which is~Ref. @3#, Eq. ~20!!
k5
24~11n!2 I y

2

2~11n!AEEx~x1xy2!dx dy12n~11n!I y~ I y2I x!1nAEEH S x22y2

2
D S ]x

]x
1

nx2

2
1S 22n

2
D y2D 1xyS ]x

]y
1~21n!xyD J dx dy

.

(3)
n’s
es
e

lni-
as
It is remarkable that three quite different approaches sho
lead to the same expression for the coefficient. Hutchinson’s
of Hellinger-Reissner overcomes the compromises inevitable
beam theory, allowing ‘‘best’’ choices for both stress and displa
ment fields, which may be incompatible. In@4#, Stephen and
Levinson adapted the procedure of Cowper@5#, but argued that the
stress distribution within a beam performing long wavelen
flexural vibration would be approximated better by gravity for
body loading~see Love@2#, Chapter 16!, rather than tip loading of
a cantilevered beam, as assumed in@5#. The former has shearing
force varying linearly with axial coordinate, while for the latte
shearing force is constant. In@3#, the coefficient was obtained
from the curvature correction during bending, again due to gra
loading ~again see Chapter 16 of Love!.

Demonstration of the equivalence of the two formulas is som
what lengthy, and is based upon usage of Green’s formula
uld
use
n a
e-

th
e

r

ity

e-

EE S ]g

]x
2

] f

]yDdx dy5 R ~ f dx1g dy!, (4)

and a knowledge of the normal derivative of the~harmonic! flex-
ure functionx on the boundary of the cross section, that is

dx

dn
52S nx2

2
1S 22n

2 D y2D cos~x,n!2~21n!xy cos~y,n!.

(5)

The key step is recognition that the term within Hutchinso
coefficientC4 involving the area integral of the sum of the squar
of the termsf 1 and f 2 , in turn involves the area integral of th
sum (]x/]x)21(]x/]y)2. Transformation of such terms within
potential theory is well documented; see, for example, Soko
koff @6#. For the present problem an outline of the procedure is
follows:
001 by ASME NOVEMBER 2001, Vol. 68 Õ 959
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]

]x F ~x1xy2!
]x

]xG5~x1xy2!
]2x

]x2 1S ]x

]x
1y2D ]x

]x
(6a)

]

]y F ~x1xy2!
]x

]y G5~x1xy2!
]2x

]y2 1S ]x

]y
12xyD ]x

]y
(6b)

and add, noting thatx is harmonic, to give

]

]x F ~x1xy2!
]x

]xG1
]

]y F ~x1xy2!
]x

]y G
5S ]x

]x D 2

1S ]x

]y D 2

1y2
]x

]x
12xy

]x

]y
. (7)

Integrate over the cross section, and transform the left-hand
~LHS! of the above using Green’s formula, to give

LHS5 R ~x1xy2!
dx

dn
ds (8)

where direction cosines cos(x,n)5dx/dn5dy/ds, and cos(y,n)
5dy/dn52dx/ds have been employed.

Substitute for the normal derivative ofx according to~5!, and
convert back to an area integral to give

EE H S ]x

]x D 2

1S ]x

]y D 2J dx dy1EES y2
]x

]x
12xy

]x

]y Ddx dy

52EE2~11n!x~x1xy2!dx dy

2EE~21n!xy
]x

]y
dx dy

2EES nx2

2
1S 22n

2 D y2D ]x

]x
dx dy

2EES S 41
5n

2 D x2y21S 22n

2 D y4Ddx dy. (9)

Next, expand Hutchinson’s expression for coefficientC4 , and
substitute the above, when one finds

C45EEx~x1xy2!dx dy

1EE n~x22y2!

4~11n! S ]x

]x
1

nx2

2
1S 22n

2 D y2Ddx dy

1EE nxy

2~11n! S ]x

]y
1~21n!xyDdx dy. (10)

Lastly substitute the above into Eq.~1! to give expression~3!. Not
surprisingly, the values of the coefficient for the circular cro
section, both solid, hollow and thin-walled, and for the ellip
cross section calculated in@1#, are identical to those given in@3,4#.
Similarly, Hutchinson’s expression for the rectangular cross s
tion reduces to the ‘‘best’’ value ofk55(11n)/(615n) as one
approaches plane stress conditions.

A further very interesting feature of@1#, Figs. 3 and 4, is the
possibility of the shear coefficient taking a negative value for
combination of large width to depth ratio, and for large Poisso
ratio. The effect of a negative coefficient would be to stiffen t
structure, leading to a natural frequency higher than that predi
by Euler-Bernoulli theory. However, as one would not norma
employ Timoshenko theory for a beam having a large width
depth ratio, this result may turn out to be of little importanc
Nevertheless, the physical implication of a possible negative
efficient requires further consideration.

Finally, it is noted that while the above values for the coe
cient may be widely accepted as the best, paradoxically Cowp
960 Õ Vol. 68, NOVEMBER 2001 Copyright ©
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values appear to be the more widely used; it is to be hoped
investigators will in future make greater use of these ‘‘bes
values.
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In his most important point Professor Stephen is complet
correct. That is, his shear coefficient and mine are identical. I w
aware of his work when it first came out and discounted it beca
it was derived by solving a static problem for a specific type
loading. It implied that the shear coefficient for the static proble
was a function of the type of loading and, further, that by choos
the right type of static loading one could find the best value of
shear coefficient for dynamic loads. As it turns out both of the
implications are correct.

Professor Stephen states, ‘‘The motivation of Hutchinson
pears to be the construction of a theory in which the shear c
ficient takes on the ‘best’ value.’’ I did not mean to convey th
impression. My motivation was simply to construct a simple, co
sistent, dynamic theory which did not require guessing a sh
coefficient. This simple consistent theory allowed me to find
expression for the shear coefficient in the Timoshenko be
theory. That this shear coefficient agreed with the ‘‘best’’ valu
simply validated my approach.

Professor Stephen states, ‘‘the values of the coefficient for
circular cross section, both solid, hollow and thin-walled, and
the elliptic cross section calculated in@1#, are identical to those
given in @3,4#.’’ What he doesn’t note is that the expressions f
the rectangular cross section in both his and my paper also
duce identical results. He further comments on the fact that
shear coefficient goes to zero for the rectangular cross sec
Actually, as shown in my Fig. 4, it is the reciprocal of the she
coefficient that goes to zero which means the shear coeffic
would have a pole at that point. Professor Stephen’s conclu
that the beam is stiffened with an increase in width is correct. I
not understand, however, his remark that, ‘‘one would not n
mally employ Timoshenko theory for a beam having large wid
to depth ratio.’’ For a Poisson’s ratio of 0.3 the reciprocal of t
shear coefficient goes to zero at a width to depth ratio of abou
This is definitely within the range I would expect Timoshen
theory to be applied. Also the lowest natural frequency wo
2001 by ASME Transactions of the ASME
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probably occur~depending on boundary conditions! about a neu-
tral axis in the width direction. I should probably also note that
shear coefficient is very sensitive to the assumed shear stres
tribution. If one were to assume a simple parabolic shear st
distribution through the thickness of the rectangular beam
would get a shear stress of 5(11n)/615n) independent of the
aspect ratio.

In my paper I also had a small section on static problems
that section I found expressions for a static shear coefficient fo
by comparing solution of my equations with the elementary be
solution including shear deformation. The comparison was d
for a tip loaded cantilever. Since Professor Stephen’s work in
cates that the coefficient depends on loading I decided to inv
gate a beam loaded under it’s own weight. To accomplish th
inserted a new termgv into the integral in my Eq.~28! and
dropped all the time dependent terms. The termg is the specific
weight of the beam andv is the displacement in they-direction.
Proceeding in the same way as in the paper, I came up with
following set of equations,

c-1
gA

EIz
50 (1)

c82w91
C4

I z
c-2

gn

2EIz
~ I z2I y!50. (2)

These equations are solved by integrating the first three times
inserting the result into the second and integrating two m
times. The boundary conditions for a cantilever fixed atx50 and
free at x5L are c(0)50, w(0)50, c8(L)50 and c9(L)50.
Since there are five constants of integration another conditio
needed. That condition is, for the axial location at which the sh
is zero, the slopec equals the slope of the center line deflecti
w8. Thus c(L)5w8(L). The expression for the center line di
placement is then
Journal of Applied Mechanics
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4 D1F gA

EIz
2 c41

gn

2EIz
~ I z2I y!G

3S Lx2
x2

2 D . (3)

The first group of terms in Eq.~3! corresponds to the Euler
Bernoulli beam solution and the second group of terms co
sponds to the shear deformation solution. This is the same exp
sion that would result from simple beam theory with she
deformation if the shear coefficient were the expression show
my paper as Eq.~57!. If one uses the integrated average displa
ment, as was done by Professor Stephen, instead of the cente
displacement then one gets the shear coefficient which he fo
that is, my Eq.~41! and his comment Eqs.~1! and~3!. Thus, even
in my approach the shear coefficient is a function of the loadi
and for a gravity load the resulting shear coefficient is the sam
the dynamic coefficient. Similar equations to~1! and ~2! above
could be developed for any type of loading on a beam and t
eliminate the need for a shear coefficient entirely.

I recently presented a paper entitled ‘‘Shear Coefficients
Thin-Walled Timoshenko Beams’’ at the Third International Sym
posium on the Vibrations of Continuous Systems, July 23–
2001 at Jackson Lake Lodge, WY. In that paper I considered
the thin-walled cases treated by Cowper plus two additional ca
As in all other cases the ‘‘best’’ shear coefficient agreed w
Cowper’s values only for Poisson’s ratio equal zero.

As to Professor Stephen’s final remark, ‘‘it is noted that wh
the above values for the coefficient may be widely accepted
best, paradoxically Cowper’s values appear to be more wid
used; it is hoped the investigators will in the future make grea
use of these ‘best’ values,’’ I fully agree.
NOVEMBER 2001, Vol. 68 Õ 961
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