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Owen Richmond
1928-2001

The mechanics and materials community lost a re-
search leader and a national advocate for the disci-
plines. Owen Richmond died April 17, 2001, in Pitts-
burgh, PA, following a battle with pulmonary fibrosis,
a degenerative lung condition. Owen had an impact on
applied mechanics and its application to materials
property determination, description, and materials pro-
cessing. He had a clear vision of the whole of mechan-
ics and materials and the ability to use that vision to
extend the realm of the possible. But, more important,
Owen was a positive influence on the lives of those
who were fortunate enough to know him.

Owen was born on April 1, 1928, in Geneva, IL. His
birth date was a source of amusement to him. He would
remark that he could be viewed as an “April Fool.” He
was far from that. Owen grew up in Wasco, IL, a small
community west of Chicago. He carried the traits of his
Midwestern roots with him throughout his life. He was
thoughtful and determined. Owen was also a warm and
generous person. He was always willing to share his
ideas and to help others understand complicated me-
chanics and materials problems. Owen was a constant
source of encouragement and enthusiasm for younger
colleagues in both academia and industry. He encour-
aged them to develop their own vision and voice and tolems in metalworking. Owen also used numerical
use it to identify research areas that would have realmethods to investigate this problem. This may have
impact. He took great pleasure in helping colleagues tobeen the only time that he actually computed results.
establish a research presence or to obtain a grant t©Owen was not averse to computing; he was simply
pursue an idea. Owen was a facilitator. willing to allow others the enjoyment of doing the

Owen graduated from Bradley University, Peoria, computation.

IL, in 1949 with a degree in general engineering. Per- October 1957 marked the beginning of a 25-year ca-
haps it was this initial training in general engineering reer with U.S. Steel's Research Laboratory in Monro-
that set the course for his future vision of mechanicseville, PA. Owen began as a scientist in the Mechanical
and materials. Owen continued his education at theMetallurgy section. He participated in fundamental re-
University of lllinois, Urbana, IL. He received his M. search on the structure of materials, material design,
S. degree in Civil Engineering in 1950. As part of his behavior, and performance. Owen was able to use his
graduate program, Owen was required to write a re-skills in mechanics to address problems that aided the
search paper. Having grown tired of drafting and de-advancement of these investigations. Owen designed
sign codes, he wrote a paper entitled “Atomic Theory and analyzed experiments on the creep and the stress
of Strength of Materials.” After graduation, he had the relaxation of metals. This work sparked his interest in
opportunity to pursue an interest in architecture with developing constitutive equations that incorporated the
the firm of Emerson, Gregg, and Briggs in Peoria. underlying mechanisms responsible for the deforma-

The Korean War interrupted Owen'’s civilian engi- tion. It also increased his resolve that good theory and
neering career. He was drafted into the Army andgood experiments go hand in hand.
taught recruits how to tie knots at Fort Belvoir, VA. Owen also believed that fundamental work should be
Owen attributed this experience to awakening his inter-motivated by, and connected to, problems of industrial
est in topology. The Research and Development Laboimportance. His early work on wire drawing was the
ratory at Fort Belvoir was looking for a person to in- result of this belief. Owen developed a theory of
vestigate the effects of atomic blasts on structuresstreamlined dies. These die shapes produced products
designed to protect people. Owen got the job. Hethat had zero redundant work during deformation and
would remark that this was the result of having the produced wire with increased performance. This was
right words on his resume. Owen continued to work asdemonstrated in careful experiments with colleagues.
a civilian employee on this project for two years after The theory was predicted on Tresca's theory of yield
his discharge. He participated in several tests of struc-and low for a perfectly plastic material. Owen viewed
tures at the Nevada Test Site. This marked the beginthe Tresca model for materials behavior as a homog-
nings of Owen'’s interest in the connection of design enization of Schmid’s Law for a crystal with an infinity
and theory to experimentation. of slip systems or a polycrystalline material with ran-

In the fall of 1954, Owen returned to academic pur- domly oriented small crystals. Owen used this initial
suits. He began his Ph.D. studies at The Pennsylvaniavork to develop a theory of ideal forming. Ideal form-
State University in engineering mechanics. Owening uses material models and deformations that require
worked on the application of plasticity theory to met- minimum work or energy of deformation. This was an
alworking. He was awarded the degree in 1958 with aarea of increasing importance to Owen in later years. In
thesis entitled “A Hyperbolic Theory of Plasticity.” one of his last conversations, Owen remarked that now
This work marked the beginning of a long interest in that he was retired, he was forming a company to de-
using Tresca-type material descriptions to solve prob-velop and market ideal forming tools.
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Owen also began thinking about the relationship be-This introduced a product’s life cycle into the design
tween chemical and mechanical interactions in materi-process. Owen viewed this as an optimization problem
als. This work was motivated by a problem of residual and talked about a holistic physico-economic design
stress formation from species diffusion. Out of this process. He had hoped to develop these ideas in a
work came other work dealing with lattice strains pro- monograph.
duced by solutes and the beginnings of chemical- Owen was instrumental in organizing the Alcoa
mechanical integration. This formed the basis of a pro-Technical Symposia celebrating the centenary of the
gram on alloy design that included both mechanical founding of Alcoa in 1888. These symposia brought
and chemical interactions. together researchers from around the world to discuss

Owen was active in the academic community asproblems that had impact on the materials industry.
well. He taught courses in elasticity and plasticity at Owen retired from the Technical Center in December
Carnegie Institute of TechnologyCarnegie Mellon  1998.

University. Here, he developed friendships and colle-  owen received several significant awards during his
gial associations that lasted for decades. He also spemiareer. In 1989, he received the Francis Frary Award
an industrial sabbatical leave, 1962—-1963, as a Visitingirom Alcoa Chairman Paul O'Neill for his outstanding
scientist in the Department of Mechanical Engineering contributions to Alcoa science and engineering. Owen
at Stanford University. Owen developed a strong sensgecejved the 1990 ASME Applied Mechanics Division
that universities and industry needed to collaborate, andyyard for his work in advancing the discipline of ap-
that out of these collaborations, synergies would de-pjieq mechanics. ASME again recognized Owen in
velop that were beneficial to both groups. He collabo- 1994 \ith the Nadai award for this contributions to the
rated with a number of institutions both nationally and 44 ancement of materials engineering in the areas of
internationally throughout his career. . processing, casting, the effects of pressure on yielding,

Iln 1966, Owen was asfked to org?nizedthe Mechani-gng the fostering of collaboration between industry and
cal Sciences Division of US Steel's Edgar C. Bain academia. In 1993, Owen’s alma mater, Penn State,

Laboratory for Fundamentgl Research. H? assembl_ed flonored him with its highest award, the Outstanding
team of researchers consisting of materials Sc'ent'StSEngineering Alumni of the Engineering Science and

experimental and applied mechanicians, and rn""them""ﬂllechanics Department. Owen was elected to the U.S.

ticians. Owen was a consummate manager. He once . . A

. e ational Academy of Engineering in 1997. Owen also
remarked that his fathe‘r ha_d told him “Always try to” served as an industrial advisor to several prominent re-
say yes, then your no’s will mean so much more. search universities in the U.S

Owen provided the guidance and resources for his col- Owen took his science seriously, but not too seri-

leagues to do research that was both interesting an%usly. One fall afternoon. a memorandum arrived in

gﬁg'?ﬂggﬁ ézfafs\;gﬁ(rztr']ot?{eoﬂteg;S:és deenvérr(])gg;igto@ailboxes across the Technical Center. It was written
P P in Owen’s all too familiar hand. The memo began to

yielding in metals, the non-normality of plastic flow, - . ; ; ;
the localization of deformation into shear bands, the_descrlbe the construction of Voronoi tessellations. This

flow of granular materials, crazing in polymers, basic IS a to_pol_oglqal idea tha? Owen had a_dopt_ed to des_crlbe
understanding of the development of stress and air gap.© dlstrlburflon Ofl. particles and \r/10|dsk|_n m?tlenals.
formation in casting, tribological studies of interfaces, th(;\;vﬁzzr%zaﬁlfn ?ﬁ%i'gat;g vg)art]scéoat e raolng Oh f(sjaves
finite strain elastoplastic analyses of forming processes L yard. gan, wen had seen
and quantitative descriptions of material structure and‘len application that_ was beyond the norm. .
failure. Through all of this work, Owen was a force in Owen was looking forward to spending more time

developing theories and corroborating them with ex- with his wife, Ann, and his four children in retirement.
perimental findings He especially wanted to spend time with his seven

Owen joined the staff of the Alcoa Technical Center grandchildren. Owen was an avid baseball fan and sup-

; : ; ter of the Chicago Cubs. He planned a family re-
in 1983 and was quickly promoted to a Senior Fellow. por ) . P

He took this position after considering opportunities in Union at Garfield Farm, La Fox, IL, in 2000 to coincide
academia. He felt that the industrial research laboratoryVith his golden wedding anniversary and a Cubs’ home
afforded him a greater opportunity to strengthen inter- stand. Upon examining the Cubs’ web site for the dates

disciplinary research efforts in materials and mechan-Of the reunion, he thought the series was sold out. He
ics. The position would also allow opportunities to in- contacted a number of friends to see if the Cubs’ front

tegrate research across pertinent length scales to prediéffice could be persuaded to find tickets for him and the
material properties. Owen received the singular distinc-grandchildren. Later he discovered that it was only the
tion of being named Corporate Fellow and laboratory bléachers that were sold out. Owen was devoted to his
director in charge of basic research. Under Owen’'sfavorite :sport‘, his family, and his grandchildren.
leadership, Alcoa began and strengthened research pro- OWen's scientific achievements are impressive, but
grams for atomic-scale simulation of materials, process€Ven more impressive were his human qualities. He
tribology, polymer processing, composite processing,Was & deeply moral man but never overbearing. He
laser processing of materials, process metallurgy, andared about people and about using mechanics to make
deformation process modeling. people’s lives better. He was also a dear friend to
Owen’s interests returned to a focus of his early ca-many. )
reer, design. He initiated a program to strengthen and He will be missed.
incorporate a comprehensive view of materials and

product design. The outgrowth of this effort was his R. E. Smelser, University of Idaho
view that products should be designed by considering L. Anand, Massachusetts Institute of Technology
process, structure, properties, and also performance. L. G. Hector, Jr., GM Research & Development
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w.amaniti’ | NoOnlinear Stability of Circular

o . _ Profegsor, - - -
e - Gylindrical Shells in Annular
Parco Area delle Scienze 181/Z,

Parma I-43100, laly and Unbounded AXiaI FIOW

e-mail: marco@me.unipr.it

Mem. ASHIE The stability of circular cylindrical shells with supported ends in compressible, inviscid
F. Pellicano axial flow is investigated. Nonlinearities due to finite-amplitude shell motion are consid-
Professor, ered by using Donnell's nonlinear shallow-shell theory; the effect of viscous structural
Dipartimento di Scienze dell'Ingegneria, damping is taken into account. Two different in-plane constraints are applied at the shell
Universita di Modena e Reggio Emilia, edges: zero axial force and zero axial displacement; the other boundary conditions are
Vlia Campi 2138, those for simply supported shells. Linear potential flow theory is applied to describe the
Modena I-41100, ltaly fluid-structure interaction. Both annular and unbounded external flow are considered by
using two different sets of boundary conditions for the flow beyond the shell length: (i) a
M. A. Paidoussis flexible wall of infinite extent in the longitudinal direction, and (ii) rigid extensions of the
Thomas Workman Emeritus Professor, shell (baffles). The system is discretized by the Galerkin method and is investigated by
Department of Mechanical Enginesring, using a model involving seven degrees-of-freedom, allowing for traveling-wave response
McGill University, of the shell and shell axisymmetric contraction. Results for both annular and unbounded
817 Sherbrooke Street, W. external flow show that the system loses stability by divergence through strongly subcriti-
Montreal, Quebec H3A 2K6, Canada cal bifurcations. Jumps to bifurcated states can occur well before the onset of instability
Fellow ASME predicted by linear theory, showing that a linear study of shell stability is not sufficient for
engineering applications.[DOI: 10.1115/1.1406957
1 Introduction behavior of a circumferentially closed shell. A literature review of

The theories available for the stability of circular c Iindricalwork on nonlinear dynamics of shelis vacuoand filled with or
y y surrounded by quiescent fluid is given by Amabili et[d2] and

shells in gnbounded air flow do. not agree sufficiently well wit%” not be repeated here. One important conclusion reached in
the experimental _results, as p_omtec_i out by Hor_n e{#]. and that study, however, is the following: Since most analyses involve
even today no satisfactory design criterion is available. Moreov%rbme kind of Galerkin- : :

. e . . . Smparison functions is as always important, but in the case of

instabilities occurred in experiments with clamped-clamped oy jinear shell motions it isrucial, for the presence of opposing

per shells in fully developed turbulent flo@1]). On the other effacts due to quadratic and cubic nonlinearities.

hand, Paloussis and his co-workers developed several linear the-rhe nonlinear stability of supported, circular cylindrical shells

oretical models, first for inviscid annular flo2,3]) and then for i, compressible, inviscid axial, subsonic flow is investigated in

viscous annular flow{4,5]). Additional results for inviscid annu- he present study for the first time. The present approach is based

lar flow were obtained by Hotek [6]. However, experiments on the geometrically nonlinear shell model developed by Amabili

with rubber shells in annular air flo@/7]) show that the onset of et al. [13] to study stability of shellzontainingincompressible

instability (divergence predicted by linear theory is not conservasigy.

tive, by a margin of more than 30 percent for clamped-clamped

shells. Since the fluid-structure interaction models used in the

study of Padoussis and his co-workers are fairly accurate, th . . .

reason for disagreement between theoretical and experimental4e- Equation of Motion and Boundary Conditions

sults is suspected to be associated with the use of linear theory i cylindrical coordinate system (®;r,#) is chosen, with the

the modelling of shell deformations. This is a common limitatiolrigin O placed at the center of one end of the shell. The displace-

of almost all the previous studies. In fact, experiments show thaients of points in the middle surface of the shell are denotad by

divergence of shells with supported ends involves deformationsiatand w, in the axial, circumferential, and radial directions, re-

least of the order of the shell thickness. For such deformatiorspectively. Using Donnell’s nonlinear shallow-shell theory, the

geometric nonlinearities must be taken into account. equation of motion for large amplitude transverse vibrations of a
Only a few researchers used a geometrically nonlinear she#iry thin, circular cylindrical shell is given b{f13])

model to investigate the aeroelastic stability of cylindrical shells 1 2F 1 /92F dw

in axial flow, but in all cases the flow considered was supersonic.  pV*w+chw+ phWw=f+P+ = — + _2(_2 —

These studies are due to Libre§&,9], Olson and Fung10], and R 9x® R\ 96° dx

Evensen and Olsofil1], and they utilized simple modal expan- PE AW PE Pw

sions that were incapable of completely describing the nonlinear 22—+ — _2) 1)

IXAO IXdO X IO
whereD=Eh®/[12(1-1?)] is the flexural rigidity,E is Young’s

1To whom correspondence should be addressed. : i :
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF modulus, » the Poisson ratioh the shell thicknessR the mean

MECHANICAL ENGINEERSfor publication in the ASME durRNAL oF AppLiEDME-  Shell radiusp the mass density of the shetlthe damping param-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 20eter,P the radial pressure applied to the surface of the shell by the
2000; final revision, May 10, 2001. Associate Editor: D. A. Siginer. Discussion ogxternal flowing fluid, and a possible, external radial excitation

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department ; ; ;
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, amf. 0is taken in most of the present Stl)dyhe_ radial .deﬂ.eCtlon
will be accepted until four months after final publication of the paper itself in th¥V IS positive inward, the overdot denotes a time derivative and

ASME JOURNAL OF APPLIED MECHANICS. is the in-plane Airy stress function, given by
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the fluid weight, are neglected. The irrotationality property is the
. (2) condition for the existence of a scalar potential functibrfrom
which the velocity may be written as
In Ezqs. (21) a;nd (22), 2the2 biharmonic operqtor is defined &4 V= —VW=—V(-Ux+®d). ©6)
=[d°19x+d°1(R°96°)]°. Donnell’s nonlinear shallow-shell . i )
equations are accurate only for modes of high circumferentil Ed. (6) the potential¥ is assumed to comprise two compo-
wave numben; specifically, 1h2<1 must be satisfied, so that nents: The first one due to the mean flow associated with the

=5 is required in order to have fairly good accuracy. Donnelrdndisturbed axial flow velocity, and the second one is the un-

nonlinear shallow-shell equations are obtained by neglecting thigady perturbation potentid associated with shell motion. For

in-plane and rotary inertia and transverse shear deformation, giytall perturbationsp must satisfy

1V4F_ 1(92w+1
Eh T R R?

7w \?  Pw dPw
IXA O z?X2 802

ing accurate results only for very thin shells, ileR. In-plane ) 1 [ 9*® 92D 5 92D

displacements are infinitesimal, i.eu]<h, |v|<h, while w is of Vb — | sz t2U o +U—75 | =0, (7)

the same order of the shell thickness; the curvature changes are . ) .

expressed by linear functions af only. wherec is the sound speed in the fluid, and the Laplace operator
In this study, attention is focused on batih a finite, simply in cylindrical coordinates is

supported, circumferentially closed circular cylindrical shell of , PD 9P 1od 1 3PD

lengthL, and(ii) an infinitely long shell, periodically supported. Vv (I):W +W +;97 +r_2 W=o.

In the latter case, the portion of the shell considered lies between

two supports,L apart, while the effect of the part of the shellThe perturbed pressufemay be related to the velocity potential
beyond is only considered as a constraint; only modes that dne Bernoulli's equation for unsteady fluid flow; hence we can
antisymmetric with respect to each support are considered in thigite ([2])

case(lower frequency modegs _ _ b EY
In both cases the following boundary conditions must be satis- P=P+p=P+p¢ ra +U ) (8)
fied:
w=0 andM,=—D{(d?w/dx?) + v 3>wI(R236%) ]} =0 whereP is the mean pressurp,is the perturbation pressure, and

pe is the fluid mass density.

atx=0L, 3) 3.1 Model With Separation of Variables. The fluid do-
whereM, is the bending moment per unit length. Two differeniain is assumed to be an annular cylinder of infinite extent in the
in-plane boundary conditions are considered: axial direction, delimited internally by a periodically supported
Case 1:N,.=0 atx=0L and v=0 atx=0L, _sheII of_infinite length and externally by a rigid ;ylinder, S that it
(4a) is possible to employ the method of separation of variables to
obtain the velocity potential. Here the mathematical trick is to
Case 2:u=0 atx=0L and v=0 atx=0L; (4b) consider the functionw and the fluid domain defined for any
e (—«,»). This means thatv is a periodic function with main
eriod 2, and the same is satisfied for the velocity potential and

for zero flow as the base; in particular, the flexural response wi %e perturbation pressure. This type of solution was used It} Pay

. L e ; ussis and Denisgl5] for shells with incompressible flow, either
?Oﬂg\(livil((l[lgr]r;gters anth longitudinal half-waves can be written 3Sinternal or external. If there is no cavitation, at the fluid-shell

interface we can write
2

moreover,u, v, and w must be continuous irf. The flexural
deformationw is expanded by using the linear shell eigenmod

. . ad W aw
WO, 0,0 = 3, [An(COSN6) + By DSIN6) ISiTA ) —) =(— ) ©
m=1 ar F—R at ox
3 and at the fluid/rigid-cylinder interface
+ 2 An- 1,008 @m-1,%), 5) 0
mt (ﬁ—r) =0. (10)
where\,=ma/L andt is the time;Ap, ,(t), By (t) andAp, o(t) r=Ry

are unknown functions df Equation(5) was obtained by sUPpos- The problem is solved by separation of variables, and the pertur-
ing that the nonlinear interaction among “linear modes” of thyation pressure at the shell wall is given by

chosen base involves only the asymmetric modes@) having a , ,

given n value, and axisymmetric modesi€0) with an oddm  Kp(uR)(uR) = Th(uR K (1R)

value. Only asymmetric modes with one and two axial half-waves pr:R_pFM[Ké(MRln TR =1 (uR)KL(R)]

are included; additional modes increase the accuracy of the analy-

. ; : - 2

sis. Axisymmetric modes are fundamental for describing the non- d d

linearity correctly. X| g TUo W (11)
where u?=a?— (U/c) [ a+(w/U)]?, a=mx/L, |, andK,, are

3  Fluid-Shell Interaction the modified Bessel functions of orderf first and second kind,

The shell is considered immersed in annular compressible fIJ%spectlvely. For flow unbounded in the radial directioR, (

flow, limited by an external rigid cylinder of radiuR; ; the case —), Eq.(1D) simplifies to

of a radially unbounded external fluid is obtained in the limit of Kn(uR) [ J\?
R,—. The cases witfR;<R (internal annular flow and R, pr:R:PFm 0t ) W
—0 (internal flow) are also described by the present model. The

fluid-structure interaction is described by linear potential flow 3.2 Fourier Transform Model. This model was applied by
theory; thus, the fluid is assumed to be inviscid, and the flo@owell and Widnall[16] to evaluate unsteady aerodynamic forces
isentropic and irrotational. The effect of fluid flow nonlinearitien shells in axial flowing fluid and extended to annular compress-
has been found to be negligible in Rgt4]. In contrast, viscous ible flow by Padoussis et al2]. In this case, rigid bafflegexten-
effects can be significant, especially for annular flow in narrowsiong, of the same external diameter as the shell, limit internally
gaps([4,5]). Gravity effects, such as prestress in the shell due tm the radial directionthe fluid domain; these baffles are indefi-

(12)

828 / Vol. 68, NOVEMBER 2001 Transactions of the ASME



nitely long in the axial direction and are connected to the sheind at the fluid/rigid-cylinder interface

one atx=0 and the other at=L. Externally, the fluid domain is

confined by a rigid cylinder at=R; . P
Assuming no cavitation, the boundary condition at the fluid- (7) =0. (14)

shell interface is R

P _[ow U ow Assuming w=A(t)sin(mmx/L)cosfif) and noting that all the

ar ot X terms in the assumed mode expansiormofmay be written in

=R (13)  similar form, the perturbation pressure at the shell wall is obtained

for 0s=x<L,

=0 for x<0 and x>L by using Fourier transforn({2])
|
m1-(—1)"e J* ] Ki(uR)IL(#R) =11 (#R)K(uR) .. - .
cogné - - - - A(t)+2jaUA(1) — a?U?A(t) ] “da
s o9 | AT R 1K R U 21 VA) U

(15)

where « is the transform variablg,=\—1 andu has been de- Mo N

fined in Section 3.1. The expression forfor unbounded flow is Fo= 2 2 {[F1mnc0ogNO)+Fp,Sin(né)]sin(A mx)
immediately obtainable by substituting the appropriate functional m=0 n=0

of Bessel functions, similarly to Eq$11) and (12). +[Famn COSN0) + F 4 SINNG) JCOIA )1, (20a)
where the functions of timé&;,,,, j=1, ... 4, aregiven in Am-

. . . abili et al.[13]. The homogeneous solution may be assumed to be
4 Airy Stress Function and Solution of the form ([12,13,19)

The expansion used for the transverse displacemesatisfies

_ _ 2 92
identically the boundary conditions given by E¢3); moreover, it Fh:ENXRZBZJ,_ EXZ N,— LJ f J L2IRdodx
satisfies exactly the continuity of circumferential displacement 2 2 27RL 2
([13)), _
— N, xR, (200)
2m - —
f %da 0. (16) whereN,, Ny, andN,, are the average in-plane force resultants
0

(per unit length, as a consequence of the in-plane constraints on

The boundary conditions for either set of E@4) give compli- the average, defined as

cated expressions when transformed into equations invoking
Therefore, they are modified into simpler integral expressions that Ny= 7L J J Ngdxde, #=X,6,x6. (21)
satisfy Egs(4) on the averag€17]), namely
o Equation (20b) is chosen so as to satisfy on the average the
f N,Rd¢=0, atx=0L (Case 2 (17a) boundary conditions imposed. Boundary conditi¢hs,18 allow
0 us to express the in-plane restraint stressgs N,, andN,, in
terms ofw and its derivatives.
By using the Galerkin method, seven second-order ordinary,
o Jo KdXRdﬁ': . [u(L,6)—u(0,6)JRdg coupled nonlinear differential equations are obtained for the vari-
ables Al,n(t)! Bl,n(t)v A2,n(t)1 BZ,n(t)l Al,O(t)l A3,O(t)l and
=0; (Case 2 (17b) Asdt), by successively weighting the original E) with the
functions that describe the shape of the seven modes retained in
and in both cases Eq.(9). The Galerkin projection of Eq1) has been performed by
— using theMathematicacomputer software.
J J N,sdxRdd=0. (18)
0 0

Equation(17a) assures a zero axial foréé, on the average at 9 Numerical Results for Annular Air Flow

=0, L, while Eq.(17b) states that the axial displacemens zero  Numerical results were obtained for a case already theoretically
on the average at=0, L. Equation(18) is satisfied whem =0 on  (with a linear theory and experimentally studied by one of the
the average at=0, L andu is continuous ind on the average. authors([7]): a circular cylindrical shell made of rubber, in annu-
Replacement of Eq¢4) by (17) and(18) simplifies computations, |ar incompressible air-flow, witl/R=0.0247 m, L/R=5.5, h/R
but it introduces an approximatioiboundary conditions are ex- =0 05, R,/R=1.25, E=2.43x1C° Pa, p=1220 kg/m, pr
actly satis_fied an discrete points, whera is the number of cir- _ 1 o5 kg/mi, and »=0.47. Supports at both ends approximated
cumfere_rma_ll waves . . . .. clamped ends. The static pressure inside and outside the shell was
Substituting the expansion @f, Eq. (5), in the right-hand side | duri ) t R0 has b taken: the added
of Eq. (2), a partial differential equation for the stress function €942 #rlng ?xper'lmen S, SO e th ash ﬁe_n aken,_ € adde
is obtained, the solution of which may be written as mass effect of stationary air inside the she _|s taken into account,
even if small. A modal damping coefficieldt=chwL/(w;,m;)
F=Fn+Fp, (19) =0.01is assumed, whewe, , is the linear natural frequency of
the first asymmetric longitudinal mode at zero flow velocity
whereF, is the homogeneous arfg, is the particular solution. (w,,=280.21 for the separation-of-variables fluid model and
The latter is given by 279.58 rad/s for the Fourier modeind
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Fig. 1 Frequency obtained from the linearized equations with-

out viscous damping (£=0) versus the flow velocity: ——, fluid
model with separation of variables; — — —, fluid model with
Fourier transform method

m,=pshaL/2+ ppm(L/2)

Kn(wR)W(uR) =11 (uR)K(uR) In(uR)
MK R (R =1 (uRDK(uR)]  uly(uR)

for the separation-of-variables fluid model; an analogous expres-
sion of my is obtained for the Fourier transform model. For this
case the shell is extremely flexible and the difference between
simply supported and clamped edges is small; in this numerical
simulation, simple supports are assumed at the shell eNds (
=0). The system is studied for the circumferential wave number
n= 3, which is associated with the lowest flow velocity for insta-
bility, according to experiments. This value is strictly outside the
usual range of applicability of Donnell’s shallow-shell theory (
=5); however, results are of interest for possible comparison with
experiments.

Results obtained by linearizing the equations of motion are
shown in Fig. 1 for both fluid-structure interaction models; zero
structural damping is initially assumed. The natural frequencies of
the first two modes are giverersusthe flow velocity. Increasing
the flow velocity from zero, the modes become complex. The
shell loses stability by divergence &t=80m/s; the buckled
shape displays two longitudinal half-waves. Beyond this point, the
shell remains unstable; no restabilization is observed. Results ob-
tained with the two different models of fluid-structure interaction
are quite close. The less conservative separation-of-variables
model will be used in the studies that follow.

Experimental results in El Chebair et ] are in good agree-
ment with the linear theoretical results at zero flow velocity. How-
ever, experiments show violent divergence at 49 m/s, wel|
beforethe value predicted=80 m/9, accompanied by large de-
formation of the shell. Moreover, the shape of the buckled shell at
49 m/s shows one axial half-wava=3; m=1), very large de-
formation and contraction of the circumference in a cross section
of the shell. Even if the effect of viscosity is included in the model
([7]), the theoretical predictions are significantly larger than ex-
perimental results.

5.1 Nonlinear Results. Results in this section have been
computed with the separation-of-variables flow model and with
modal dampingZ=0.01. Solutions of the nonlinear equations of
motion have been obtained numerically by using the software
Auto ([19]) and direct integration of the equations of motion. No
periodic solutions have been found, which agrees with the experi-
mental results. In particular, two types of static solutiddiver-
gence have been detectedi) solutions of the typeB;,/A;,
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Fig. 2 Amplitude of nonoscillatory solutions versus the flow
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(a) Amplitude of the first

= Bon/Azn, ., _When' the first _and second asymmetric IonglIbngitudinal mode A;,/h; (b) amplitude of the second longitu-
tudinal modes are in antiphase rti.e., they are described by the ginal mode A, nlh; (c) amplitude of the first axisymmetric

same function in@), and (ii) solutions of the typeB,;,/A;,

=—A,,/B,,, i.e., when the first and second asymmetric longid;,/h; (e) amplitude of the fifth axisymmetric mode

830 / Vol. 68, NOVEMBER 2001

mode A;,/h; (d) amplitude of the third axisymmetric mode

Asolh.

Transactions of the ASME



15
10 5t
B 5 =
= 1 <4f branch 3
z Of————— - IIIIEEE e &
< < ;§.3' branch 2
g
-10 8
g2
-15 £
(a) 0 120 1t stable
10 % 30 40 50 60 70 80 90
( a) Flow velocity {m/s)
S
6
= 1
g o e 5
& £
< 5 q;a_ branch 2
§
Eql
105 120 E
_2~
. s
) Flow velocity (m/s) E
. . . . 1
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tudinal modes are orthogonal ih When all seven generalized
coordinates are retained in the equations of motion, the system 1.5}
does not possess a preferential angular coordia&telocate the
deformation.

In Figs. 2 and 3 the various branches represent the bifurcated
solutions of the equilibrium position of the shell. In particular,
branch 2 bifurcates from branch(dndeformed configuratigrfor
a flow velocity of 81.8 m/qthreshold of instability predicted by
linear theory; it is strongly subcritical and is associated to a mode 05
shape with two longitudinal half-waves. Branch 3, which is also stability
strongly subcritical, bifurcates from branch 1 for a flow velocity
of 115 m/s and is associated with a mode shape with a single 9% a0 40 50 60
longitudinal half-wave. Other branches involve a combination of (c) Flow velocity (m/s)
the two longitudinal modes, giving a coupled mode divergence. ) ) ) )
Figure Za) shows that branch 3 is stable for flow velocities largeffid- 4 Basin of attraction of undisturbed and bifurcated solu-
than 25.5 m/s; analogously, branch 2 is stable for flow veIocitié'Q?Sé m.'trr']'m”m. ?(mpl;;(ljj(::_e ”ecessaghf?lr d.'t‘}qergi.”che IS '”d'(;
larger than 35.7 m/s. These results indica_te that, for flow velqciti§%§c &"i'éplaien'éms\?vi'th flirrf{ axi;i)modz S"ﬁ’;pe?n P ?bs)esrr?;l svsifh
'_argef than_2_5.5 m/s, _at le"?‘St tv(/tmur_ S_tartlng at 35.7 m)seql_Jl- antiphase modes, static displacement with second axial-mode
librium positions coexist with the original undeformed configuraghape; (c) shell with seven degrees-of-freedom at first-axial-
tion of the shell. Similar results are shown in Fig. 3, obtained hyiode, resonant modal excitation.
considering modes orthogonal t Branch 2, related to a mode
with two longitudinal half-waves, is stable for flow velocities be-
tween 35.8 and 45.3 m/s, while the coupled-mode divergence,
branch 4, is stable for flow velocity larger than 22.9 m/s. Brancht®n and bifurcated solutions is given in Fig. 4. This study has
loses stability through the bifurcation that gives rise to coupletbeen performed by direct integration of the equations of motion,
mode divergencébranch 5. Branch 3, relative to a mode with using an adaptive step-size fourth-fifth order Runge-Kutta
one longitudinal half-wave, is never stable. These nonlinear mnethod. Figures(4) and 4b) show the behavior of the shell as a
sults show that, if the shell is given enough perturbation, the sfanction of flow velocity and with static perturbation of the first
lution can jump from the undeformed original configuration to and second longitudinal mode shape, respectively. The minimum
bifurcated solution for flow velocity larger than 22.9 m/s. The losamplitude necessary for divergence is indicated by a thick solid
of stability occurs as a violent divergence, with very large shdihe in the figure. In particular, fotJ =49 m/s almost the same
deformations. static displacement with the shape of the first or second longitu-

In order to investigate the perturbation necessary to jump tinal mode is necessary to have divergence; however, a different
bifurcated branches from the trivial equilibrium and the shape shape gives a jump to a different branch. For the shell model with
the buckled shell, the basin of attraction of the trivial configureall seven degree-of-freedom active and a static perturbation of the

divergence

70 80 90
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Fig. 5 Post-divergence shape of the rubber shell for mode (n=3, m=1). (a) Computed
shape for flow velocity 30 m /s; (b) experimental shape, from Ref. [7].

first longitudinal mode, the result is very close to that in Fig)4 The computed shape of the shell after divergence is shown in
with the difference that a jump to branch 4 is always obtaine&fig. 5a) for U=30m/s; it corresponds to the stable point of
The basin of attraction has been investigated in Fig). dy giving branch 3 in Fig. 2 fold=30m/s, i.e., to modén=3, m=1). At

a dynamic  perturbation. A modal excitation f this velocity, the internal faces of the shell start to touch each
=f,,cosqg)sin(mx/L)coswt) is given to the first longitudinal other as a consequence of the large axisymmetric contraction.
mode, at the linear resonant radian frequettberefore the fre- Therefore, this shape is not significantly changed by increasing
quency is changed with flow velocjtyThe minimum force am- the flow velocity. The experimental shape obtained by El Chebair
plitude f=f,,/{hw?,m,[2/(7L)]} necessary for divergence iset al.[7]is shown in Fig. ) and is in excellent agreement with
indicated. This force decreases with flow velocity much more thdHd- 5(@). Figures $ab) also justify the necessity of a nonlinear

a Static perturbation’ as can be seen by Comparing F|g|aaes)4 She” mOdel to deSCI‘Ibe the dynam|CS Wlth SUCh |arge defOI’ma-
in particular, around 50 m/s only a small excitation is necessary #8NS- o . . )
precipitate divergence. This result is in good agreement with theThe predictions of divergence computed by using linear and
experiments of El Chebair et 4I7]. Moreover, as a consequenceionlinear theories are compared to the experimental value in
frequency of excitation will result in jumps much easier; this norfhe nonlinear theory, can only be given as a range of values if the

linear behavior is enhanced with flow velocif20]). level of perturbation is not exactly known. Summarizing, results
show that the onset of instability predicted by nonlinear theory

given enough disturbance is 22.9 m/s for coupled-mode diver-
gence(or 25.5 m/s for divergence in the first mgdestead of the

Table 1 Comparison of linear, nonlinear and experimental ((Kd)} : ; . : |

results for instability of the rubber shell linear threshold of 81.8 m/s: a difference of more than three times!
Type of Instability “Helicoidal” Solution 6 Numerical Results for Shell in Unbounded Water

Linear divergence, mod@=3, m=2) 81.8 m/s Flow

Nonlinear divergence, mode =3, m=1) gﬁg"giréﬁ'g The system analyzed is a circular cylindrical shell simply sup-

Experimental  divergence, mode=3, m=1) 49 m/s ported at the ends\;,=0), immersed in unbounded flowing wa-

ter (c=«) and with L/R=2, h/R=0.01, E=206x 10’ Pa,
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Fig. 6 Amplitude of nonoscillatory solutions versus the non-
dimensional external axial flow velocity; in-antiphase modes.
——, stable branches; — — —, unstable branches. (a) Ampli- _10
tude of the first longitudinal mode A ,/h; (b) amplitude of the (b) 6
second longitudinal mode A, ,/h.
Fig. 8 Behavior of the system starting from a point where the
system is subjected to coupled-mode divergence at V=6, and
: : then slowly decreasing the nondimensional flow veloci V.
p=17850 kg/_rﬁ, pr=1000 kg/mi, and»=0.3. It is studied fom eneralize)(/j coordinatgs: (@) A,, and B, , versus Vt;y (b) A,
=5, which is the first mode to become unstable according 4 5. versus V. : : :
linear theory. A modal damping=chwL/2=0.01 is assumed and 2 '
the separation-of-variables flow model is used; the mean pressure

is P=0. A nondimensional fluid velocityV=U/{(7?/L) single longitudinal half-wave: branch 3 bifurcates from branch 1
X[D/(ph)]¥3 is introduced for conveniena§21]). for V=4.44 and is associated to a mode shape with two longitu-

Figures 6 and 7 present the bifurcated solutions of the equilitiinal half-waves. Branch 4 involves a combination of the two
rium position of the system. In particular, branch 2 bifurcates fromangitudinal modes, giving coupled-mode divergence. Figuee 6
branch 1 forvV=3.36 and is associated with a mode shape withshows that branch 2 is stable for flow velocities larger than 1.64;
analogously, see Fig.(6), branch 3 is stable for flow velocities
larger than 2.09. These results indicate that for flow velocities
larger than 1.64, at least tw@our starting at 2.0psolutions co-
exist with the original undeformed configuration of the shell.
More complex results are shown in Fig. 7 in which modes or-
thogonal in# are considered. Branch 4 corresponds to a stable
coupled-mode divergence, emerging\at 2.63 and is stable for
V>2.37. Actually in Fig. 7 this coupled-mode solution is indi-
cated to be stable only for a small part, but all points of the curve
are stable for a fixed velocity; i.e., when the velocity is changed,
the solution is stable only if all seven degrees of freedom are
evaluated, and this solution evolves on an axisymmetric surface,
rotating around the velocity axis in a kind of helicoidal motion.
The reason for this peculiar behavior is due to the relationship
Bin/Ain=—A,,/B,, between the generalized coordinates re-
lated to asymmetric modes. These results show that the onset of
instability predicted by nonlinear theory, given enough distur-
bance, isV=1.64, instead of the linear threshold of 3.36. The
difference is of the order of 1:2.

In order to simulate the dynamical behavior of the complete
system, the equations of motion have been integrated numerically,
starting from one of the fixed points obtained\&t 6 and then
slowly decreasing the flow velocity. An adaptive step-size fourth-
fifth order Runge-Kutta integration algorithm was used. The result
in Fig. 8 shows that all seven generalized coordinates are different
from zero for a large range of flow velocities. It is interesting to

20

10

4,0 1h
(=]

Fig. 7 Amplitude of nonoscillatory solutions versus the non-

dimensional external axial flow velocity; modes orthogonal in observe that, fow>2.37, the solution belongs to an axisymmetric
6. ——, stable branches; — — —, unstable branches. (a) Ampli- surface that rotates around its axis in helicoidal fashion. This axi-
tude of the first longitudinal mode A, ,/h; (b) amplitude of the ~ Symmetric surface is obtained by rotation of branch “4” in Fig. 7
second longitudinal mode B, ,/h. around theV-axis. For 1.64V<2.37, the system follows the
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first-mode divergence without rotating any more.\At 1.64 the tlodel for the Study of the ﬁ‘ag”"ySf\fff%everefo????' cyindreal Shels
i : i onveying Viscous Fluid,” J. Sound Vi pp. — .

SyStem regains the stable undeformed Conﬂg.u.ratlon' The resu"[%] Horacek, J., 1993, “Approximate Theory of Annular Flow-Induced Instabili-

obtained can be compared with those of Amabili e{ &8] for the ties of Cylindrical Shells,” J. Fluids Struct7, pp. 123-135.

same shell with internal water flow. The qualitative behavior of [7] I chebair, A., Paloussis, M. P., and Misra, A. K., 1989, “Experimental Study

the system is the same, but the shell is slightly more stable. of Annular-Flow-Induced Instabilities of Cylindrical Shells,” J. Fluids Struct.,
3, pp. 349-364.
7 Conclusions [8] Librescu, L., 1965, “Aeroelastic Stability of Orthotropic Heterogeneous Thin

Panels in the Vicinity of the Flutter Critical Boundary. Part I: Simply Sup-
The results obtained for both annular and unbounded external ported Panels,” J. Mec4, pp. 51-76.
axial flow show that the onset of instability, given enough pertur- [9] Librescu, L., 1967, “Aeroelastic Stability of Orthotropic Heterogeneous Thin
bation. is much Iowe(two three times. or even morman the Panels in the Vicinity of the Flutter Critical Boundary. Part I1,” J. Me8. pp.
. N e . ! . P - 133-152.
instability limit predicted by linear theories. This is due to the[I

- . g > 10] Olson, M. D., and Fung, Y. C., 1967, “Comparing Theory and Experiment for
large shell deformation associated with divergence of the shell  the Supersonic Flutter of Circular Cylindrical Shells,” AIAA &, pp. 1849—

that, as indicated by calculations and experiments, are at least of 1856. _ _ _
the same order of magnitude as the shell thickness. The preséh]ﬂ Evensen, D. A and OI;on,‘M. D., 1968, “Circumferentially Travelling Wave
study explains the discrepancy between linear theories and experj: Flutter of a Circular Cylindrical Shell,” AIAA J.6, pp. 1522—-1527.
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sentative of the physics involved. With the use of a partitioned-

1 Introduction i ' a p:
There exist two different approaches to model the evolution gpodeling approach, however, the evolution of localization can be
redicted with the use of local models.

material failure, i.e., continuous and discontinuous ones, after tﬂel_h basic id fth titioned-modeli his t |

onset of failure is identified. Decohesion models and fracture me., ' P3SIC 1d€a of the partiioned-modeling approach IS to apply
chanics models are representative of discontinuous approachef'ﬁﬁerent Io_cal constitutve moqels |n5|d_e and OUt.S'de the Iocallz_a-
which strong discontinuities are introduced into a continuum bo n _doma'” wh_ose bour_1dary IS amoving material surface of d'.s'
such that the mathematical model is well posed for a set of givéntinuity that is associated with the local changes of material
boundary and/or initial data. On the other hand, nonléicatgral properties. The initial point of localization is taken as the point at

or strain gradientmodels, the Cosserat continuum models anWh_iCh the type of governing differential equation transforms from

rate-dependent models are among the continuous approaches P9 hyperbolic to elliptic. The partitioned-modeling approach
posed to regularize the localization problems, in which the highdt®S been applied to both quasi-static and dynamic localization
order terms in space and/or time are introduced into the straffoblems(e.g.,[4—8]). To provide a rigorous mathematical treat-
stress relations so that the mathematical model is well posed ifgnt. @ similarity method has been used with a linear local elas-
higher-order sense for given boundary and/or initial data. toplastic model to solve the localization problem that involves
The use of higher-order terms in space makes it difficult {8'0ving boundary condition§7]), without invoking any jump or
perform large-scale computer simulation, due to the limitation &fiscontinuity conditions in advance, as required in the previous
current computational capability. As can be found by reviewing/ork ([5,9)). To find a closed-form solution, the key assumption
the existing nonlocal models, the nonlocal terms are usually if1ade in the analytical approach was that the speed of the moving
cluded in the limit surface so that a single higher-order governirfgirface is constant. To explore the applicability of the similarity
differential equation will appear in the problem domain. If we cafethod to other problems, a closed-form solution is obtained in
find an alternative approach to replace the single higher-ordéis paper for a nonlinear local damage model.
equations in the single domain with lower-order equations in sub-A recent study of the failure wave propagation in shocked
domains, parallel computing might be used for the large-scaiéasses implies that the microfissuring at one location might in-
simulation of localization problems. To demonstrate the proposéddce local deformation heterogeneities that in turn initiate mi-
approach, a one-dimensional wave propagation problem is congtiefissuring in the adjacent material and so (ph0]). Hence, a
ered here. diffusion equation governing the progressive percolation of het-
It is known that waves can propagate in a continuum only if therogeneous microdamage appears to capture the essence of the
material tangent stiffness tensor is positive definite. The wadynamic failure evolution in shocked glasses, as verified with the
equation appears to lose its hyperbolicity with the advent of maxperimental data available. In fact, the use of jump conditions
terial softening if a local model is use1,2]). As shown by could also result in a diffusion equation governing the failure
Bazant and Belytschkf3], the softening region in a local con-wave speed, through a mathematical argunggst). However, a
tinuum tends to localize into a single surface at which the stragfosed-form solution cannot be obtained for the nonlinear diffu-
becomes infinite instantaneously. As a result, if a local model é$on equation governing the evolution of microdamage that de-
used, the strain-softening process dissipates no energy over génds on the stress state and internal state variables in general. In
nite interval of time in the problem domain, which is not repreerder to obtain a closed-form solution in this paper, the diffusion
speed of the moving material surface is simplified to be constant.
. This can be thought as a special case of diffusion: i.e., the time-
e RO U S e sy o VO30 Of @ eal ifusion process. Due (0 the imitation of cur-
MECHANICAL EN)(lBINEERSfor publication in the ASME GURNAL OF APPLIED ME- rer_lt eXper'men_tal facilities, _'t is still a challenglng task to qu_ant"
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. ofatively determine how the internal energy dissipates and diffuses
1999; final revision, Nov. 10, 2000. Editor: J. W. Ju. Discussion on the paper shoyfdl real time associated with the evolution of dynamic failure. Al-
0 s 0 Bl fssr v T Wt pepre o Meehfhugh the proagaton of 2 fiure iteriace has been demon-
rated in the open literature, the speed appears to decrease with

until four months after final publication of the paper itself in the ASMEJ@NAL OF S h . : - I
APPLIED MECHANICS. propagation distance in some impact experiméetg.,[11]) and
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to be constant in other impact experime(esy.,[12]), due to the In order to initiate localized damage in the bar at the fixed end
difference in experimental techniques. The lack of consistency 3= 0, a constant stress, within the range (0.5, ,0) is applied
existing experimental data, therefore, does not warrant to quardt-the free enck=L. Thus, an elastic stress wave will propagate
tatively evaluate the speed of the failure interface. The proposalbng the bar fronx=L to x=0. Generally, the equation of mo-
mathematical approach for modeling dynamic failure evolutiotion for one-dimensional wave propagation can be written as
with local constitutive models provides not only a qualitative 5 2

means to explore the energy dissipation and diffusion process, but &_u_ 1 d_U a_u =
also a useful tool to verify the numerical solutions. at?  p de ox*

(6)

wheret denotes time, and displacement.
2 Partitioned-Modeling Approach With a Nonlinear ~_ Before the wave front reaches the rigid boundary:a, the
Local Damage Model stress is below the limit stress. The material behavior is elastic and
9 ' o ‘the tangent modulus is positive. Therefore, the differential equa-

The proposed analytical approach is illustrated here by solvifign governing the elastic wave domain is hyperbolig— v 2u,y
a one-dimensional problem of dynamic failure evolution, with the. g \yith vo=(E/p)*2 being the uniaxial elastic wave speed.
use of a rate-independent nonlinear local damage constitutifghen the wavefront reaches the rigid boundary=at, = L/v,,
model(Fig. 1. In this problem, a tensile bar of lengthwith mass  stress will be doubled and exceed the limit stress. As a result, the
densityp is fixed at the left end=0. Letting E denote Young's material will undergo damage with a negative tangent modulus.
modulus,o the normal stress; the normal straing the elastic Thys a new domain, i.e., a dynamic localization domain, is pro-
limit stress withe =0 /E, andb the model parameter, the dam-qyced, in which the type of governing differential equation trans-

age model is described as follows. i forms from being hyperbolic to elliptic. If nothing is added to
A strain-based damage surface is defined as regularize the solution, a zero measure of the elliptic domain
fl=g—go(1+bD) 1) would occur for the local model. However, the boundary between

) ] the elliptic and hyperbolic domain is assumed here to be governed
whereD is the damage parameter which can be calculated througfa 5 diffusion equation which is the transition type between hy-

the damage consistency condition: perbolic and elliptic PDE'§[13]). As can be seen, the initiation of
e—gq localization is accompanied by the initiation of a material bound-
D= , If e=gg. (2) ary across which the type of governing differential equation
beg changes due to the material damage. This material boundary will

D is zero for the undamaged material, and it can grow ubtii move along the bar during the evolution process of localization.
=1 with e=gr=(b+1)g,. The elastodamage secant stiffnes§he physics behind the evolution of localization is related here to

takes the form of the progressive percolation of heterogeneous flow or microdam-
age, starting from a critical state.

Eed_E(1-D)— (b+1)ep—e E if eme 3) Two facts based on experimental observations should be eluci-

beg ’ 0 dated here. First, the size of the localization zone is finite. Second,

this finite localization zone is not formed instantaneously. Instead,
it is formed over a finite time span. In other words, the evolution
Ee, if e<gq (elastic regimg, (4a) of localization, which is represented by a moving material bound-
) ary between the elliptic and the hyperbolic domain, has a finite
o=\ (b+1)ege—e (ap) Speed. To obtain a closed-form solution, this speed is assumed
beg here to be a constant,, as discussed in the last section. Based on
the experimental data available, however, it appearsithahould
depend on the stress state and internal state variables in general.
In summary, the whole solution domain is partitioned by a
moving boundaryd), = x,(t) after the limit state is reached. At
any given timet>t_, the whole domain consists of two subdo-
mains: an elliptic domain(), and a hyperbolic domain(Y,

The stress is then given by

E, if e=¢y (damaging regime

By takingdo/de =0, we gete, =(b+1)g,/2 that corresponds
to the ultimate limit stresso =(b+1)%20,/(4b), as can be
shown by substituting, into Eq. (4b). Note thate=2¢, in this
nonlinear damage model.

The corresponding tangent modulus takes the forms of

E, if e<gq (elastic regimg, (5a) +Qy), as shown in Fig. 2. Therefore, we can apply different
do
de ~ o (8—e0), if e=eo (damaging regime  (5b)
€p t
A
t ___)_(b_(p = vp(t-t) Xg(t) = V;,(t‘tL)
2.0 0Q, 99,
R W N < Qu____
bo
B 1.5
@ i //“\\ b=4 t,
< L \
o 104 ---- ~s N \b=3
2 i AN \
N ' \ b=2
= \ \ \ \
g 0.5+ ! b
: N
2 b ' \\ \ \
t —» X
0.0 —t \, r 9 L
0 1 2 3 4 5 . - . .
) ] Fig. 2 After the limit state is reached, the whole solution do-
Normalized Strain (€/ £,) main is partitioned by a moving boundary  (d€)) into two do-
mains: an elliptic domain (£, and hyperbolic domain (€
Fig. 1 A nonlinear local elastodamage model +Q,)
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local constitutive models to the elliptic and the hyperbolic dothat isl=vﬁ/(2a2). Therefore, the solution of Eq10) becomes
mains, respectively, and obtain an analytical solution for the

whole domain. ¢~ (D) ==[2k(x—vp(t—t) +(v§/a)*]*~vila. (17)
Using the condition of final states” (x=0t=tg) =¢_, we obtain

3 Analytical Solutions in Partitioned Domains for a (b+1)e2 [b+1 vp) 2

Dynamic Case k=*m - (v—e) : (18)

3.1 Solution in Elliptic Domain (£2,). After substituting  Fjna]ly, the evolution of the strain field in the localization do-
Eg. (5b) into Eq. (6), the differential equation governing the 10-main is described by

calization zone is given by
_b+1 bso(vb)z €9

du-  2E [ou” 9u” e (x )= ——eo— — | 2| +=F,
i + beop ( X 8,_) g =0, Xxe[0xy(t)] and 2 2 \vg 2
tE[tL ,tF] (7) XE[O,Xb(t)] and tE[tL !tF] (193.)
where the superscripts and * denote the field variables to theWith
left and right of the moving material boundary, respectively. The 4 2
N . . . ) Up (b+ l) Up
location of the moving material boundaxy(t) is defined as F=|b? —| —————|b+14+2b|—| |(x—wvy(t
Ve vp(te—1t) Ve
Xp(t)=vp(t—=t), te[ty,te]. (8) 12
Sinceg| is a constant, Eq7) can be equivalently rewritten as —1))

2, — - 2
ou E 7 (au EL) =0. (9) The corresponding strain rate thus takes the form of

+ J—
% begp Ix

X
. o _— o (b+1)e vy ?
Then, taking derivative with respect xdfor each item in Eq(9), e (X,0)= ————|b+1+2b|—]| |,
we have AF(te—1t) Ve
@ [gu~ E % [ou” 2 xe[0Xpy(t and te[t,,te]. 1%
_2( o)t L 8L) o o) e [0xy(1)] elt te] (1)
Y X Eop IX"\ X 3.2 Solution in Damaged Hyperbolic Domain(Q,,). The

Equation(10) is the differential equation governing the evolutiorgoverning differential equation for the hyperbolic domaly is
of the strain field after the limit state is reached. Lat similar to Eq.(7) except that the tangent modulus is positive due

=2E/(pbeo) =2v2/(be,), and define a new function to e~ <0 in Eq. (Sh), namely,
ou- ut  2E [aut Pu”t
qo_(X,t)zw—sL:s_—sL. (11) it +bsop( ox L) 2 =0
Then, Eq.(10) becomes xe[Xp(t),Xe(t)] and te[t,,tg] (20)
? _ ad 5 whereb>1. Forb=<1, ¢ =¢q, so that no damaged hyperbolic
2¢ tagele ) =0 (12) (damage hardeninglomain exists.

Following the same derivations as in the previous section, Eq.

It can be rewritten as follows: (20) can be rewritten into a form similar to E¢L2), i.e.,

Puta((ex)*+ ¢ @) =0. (13) 2 a o2
The following set of data is prescribed for E4.3): pr o+ > W(<p+)2=0 (21)
¢7(X:Xb(t),t)=o, te[tthF]v (14&) Where
@7(X=01t=tF)=8F_SL:8L1 (14b) (9u+
+ o
which represents the condition at the moving bounda(y) (the P =T ELTE TEL

initiation of localizatior), and the boundary condition at the fixed

end whent=t, the time at which the final rupture occurs. In this By the concepts of the domain of dependence and the range of
paper,tr is considered to be an independent parameter, whigiluence([14]), the post-limit response through the moving ma-
should be related to the strain rate in the post-limit regime. In fadgrial boundaryd€}, only affects the solution at the points be-
(ee—eo)/ (te—t,) yields the average strain rate a0 during tween the moving boundarie®); =x,(t) and 9Q,=x(t) that

the evolution of damage. are originated at the point Q) (Fig. 2. Therefore, the hyper-
The general solution of Eg13) can be obtain by variable trans-bolic domain can be further partitioned into two subdomains:
formations(Appendix, and is given as follows: Qp={(x,t):xe[xp(t) Xe() L, te[t  te]}  and Oy ={(x,t):x

B v 2 e[xe(t),L],t e[ty ,te]}, where the subdomaif),, is under the
e (x,t)==%[2(k(x—c(t=t))+1)]"*~ca. (15) influence of post-limit response but the subdom@in is not.
Substituting Eqs(8) and(14a) in Equation(A2) (Appendix we Because of the evolution of the localization zone and the propa-
have gation of the reflected wave, the boundaries at both the left and
right side of the subdomaif2,, are moving with time. The left
O0=¢ (vp(t=t),)=Ff(vp(t—ty)—c(t=t)). (160) boundaryiQ), (onset failure surfagds assumed to be moving at a
The only choice for the above condition to hold leadstey,, ~Constant speed,, and it is characterized by a bounded strain
becausé is a variable. In other words, the response in the elliptifiat must be not larger thas . The right boundary(}, (dam-

domain is instantaneous. A=0, t=t, , we have aged wave frontis moving with speedj and is characterized by
~ 2 go. Thus, for the subdomaif); , we have the following set of
0= (Ot)==(2)"~vy/a, (160)  prescribed boundary conditions:
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e (x=xp(t),)=ey, telty,tel,

tel[t te].

(222)

e (x=x(1),1)=¢o, (220)

The positions of the left and right boundaries, for tithet, are

determined by Eq(8) and the following equation:

Xe(H)=vE(t—t)), with vE=0v(1-1b)¥2 and te[t,,te],

(23)

respectively, where* is the speed of the damaged wavefront,s " (X,t)=

which follows from the fact that the tangent modulds/de
=E(1-1/b) ate=¢y.

Substituting Eq(24) into (31) gives

b+1
e (1= —5— e~

X 2

ve(t—1)
xe[xp(t),xe(t)] and te[t,,te].
The corresponding strain rate is given by

bSO
2

(32)

bSOXZ

T X e [Xp(1),Xe(1)]

and tE[tL 1tF]'
(33)

To solve this boundary value problem with the moving bound- 3.3 Solution in Undamaged Hyperbolic Domain(L,, ).
ary conditions, a similarity metho15,16)) can be used. The To obtain the strain distribution directly, the governing differential

similarity transformations assume the form
X—Xp(1) X—vp(t—t.)
Xe() =Xp(t)  (vg —vp)(t—t))’

X & [Xp(t),Xe(t)]

on=¢", n=

and tE[tL,tF] (24)

equation for the subdomaif),, is expressed in a strain-based
form as follows:

where x—x,(t) is the distance fronx to the moving material with the boundary conditions

boundaryd(), andxg(t) —xy(t) is the current total length of the

domainQ, .
Here, it is reasonable to suppose thas not a function ot and

x separately, but rather it is a function of their dimensionless ratio

et E d%e"
?_;W:o xe[Xg(t),L] and te[t,,tg]
(34)
et (x=x(1),t)=g,<gq, te[t,,te], (3%3)
et(x=L,t)=e,=0,/E, te[t, te], (3)

7. Using this assumption, E§21) can be recast into an equationwhereg, is a bounded strain which must be not larger thgnin
for the unknowny. To do this we first represent the partial derivathis case, the similarity transformations take the following form:

tives of ™ with respect ta andx in terms of the derivatives of

with respect ton, which can be found, using the chain rule, to be 0(n)=—

9? . 1 x2  d#? 2x(vi—vy) do
¢ T E oA (2 d? | (-t dn)’
(250)

Z L, d’0 [06\?
e Y ] €9

Substituting Eq(25) into (21) and recalling that

X

m:(vg_vb)ﬂJrvb (26)

from Eg. (24), we can reduce the second-order PDH) to a
second-order ODE as follows:

2
[(vp+(vs —vp)n)*+ad] a2

2
+2(vi —vp)[vpt (ve

dn

s 27)
Up) 7 d7] .

Equation(27) has the simple form
d . 2 1o, 28
an [(vp+(ve —vu)7) +a0]ﬁ =0; (28)

and therefore, we have
. ) de

[(vp+(vg —vp)7m) +a0]ﬁzcl (29)

for some constan€,. Since the symmetric condition at=0
whent=t_ is ¢(x=0t=t,)=0, we havedd/dn(n=0)=0 so

that C;=0. We have the trivial solutiordd/d»=0, namely,
f=constant. The nontrivial solution can be obtained from the fol-

lowing equation:

[vp+(vE —vp) 7]*+ab=0. (30)
The general solution of Eq30) is given by
1 * 2

6=— v+ (v —vp) 7], (31)
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8+ _ X_l)g(t_tL) ~ d
£ n= L*Ué(t*tL)' XE[Xe( )1 ] an
telt,,te] (36)

whereL —v% (t—1t,) is the current total length of the domatiy,,
and g, is the strain corresponding to the incident elastic stress
wave.

The solution is found to be

et(x,t)=0,/E, xe[xt),L] and te[t,,teg]. (37)

The corresponding stress field in each subdomain can be calcu-
lated by using Eq(4).

3.4 Discussion and Demonstration. There is a jump in
strain rate across the moving material bounda®y = x,(t), i.e.,

e (x=xp (1), )#e " (x=x4 (1),1), te[t ,te]. (38)
This fact is easily seen because it follows from Etpb) that

é‘(x=xb(t),t):w{(b+l)(2)2+2b ,
4b(te—t,) vy
teft te], (380)
while the use of Eq(33) results in
beg [vp)?

et (x=x, (1),1)

e BRI Rc:e

There is also a jump in strain rate across the moving boundary
d0,=Xe(1), i.e.,

Ve

et (x=xg(1),)#e (x=x2(1),1), te[t,,te]l, (3%)
because it follows from Eq.33) that
et (x=xg(1),t)= w, te[t, tel, (3%)
¢ (t=ty)
while the use of Eq(37) yields
e (x=x2(1),1)=0, te[t,,te]. (3%)

At the moving boundaryx,(t)=v,(t—t.), the normalized
strain and stress jumps are given by
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Fig. 4 Normalized stress profiles corresponding to Fig. 3
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Fig. 11 Damage profiles for different v, at t=1.25¢,
Fig. 13 After the limit state is reached, the whole solution do-
main for a static bar is partitioned by a moving boundary (0Q)
into two elliptic domains:  Q, and Q,

regularized by the initiation of a moving material boundary, across
which different elliptic equations hold in the subdom#h and
subdomain(});, , respectively. Using the partitioned-modeling ap-
proach discussed in previous sections, we can apply different local
constitutive models to each such domain, and obtain analytical
solutions for the whole domain by enforcing the displacement
continuity across the interface between two subdomains.

Normalized Strain (&/ €)

1.00 1.05 110 115 1 20 1.25 4.1_ S_olution Insi_de the Localizatior) Domqin(ﬂ|). _ After
Scaled Time (t/t,) substituting Eq(5b) into Eq. (41), the differential equation gov-
L : N T
erning the localization zone is given by

Fig. 12 Strain history at x/L=0.05 and 0.1 after localization ou~ J2u”
occurs (W—SL WZO xe[0xy(t)] and te[t,,tg]
(42)
- 2 +_ - 4  where the superscripts and © denote the field variables to the
A—S: SR E(ﬁ) and A—U: g7 _ E(U—b) left and right of the moving boundary€Q = x,(t), respectively.
€o €o 2\ve %o %0 4lve The location of the moving boundary(t) is defined by Eq(8).
(40) Sincee is a constant, Eq42) can be rewritten as

The analytical solutions are illustrated in Figs. 3—12, with an Ju- 9l ou-
assumption oft=1.2%, . The strain and stress are normalized (__SL)_(__SL) =0. (43)
with respect tos, and oy, respectively. Figures 3, 4, and 5, re- X X\ X

spectively, show the evolution of dynamic failure. The effects of
the model parametdy on the strain, stress, and damage fields are
displayed in Figs. 6, 7, and 8. The influences of the speed of tﬁl%

By solving the equatio@u/dx—¢e =0, we get only a trivial
lution Ju™/9x=¢ that excludes the evolution of localization.
e meaningful solution can be obtained by solving the following

moving material surface on the evolution of localization are alsg uation:
illustrated in Figs. 9, 10, and 11. The jumps in the strain rate can '
be seen in Fig. 12. d [ou” \
- - . N - & W—EL) —0, (44)
4 Analytical Solutions in Partitioned Domains for a . , L
. with the following conditions:
Static Case
To demonstrate the applicability of the proposed approach to e (Xx=0t=t)=e_ (458)
other cases, the analytical solutions for quasi-static failure evolu- e (Xx=0t=tp)=¢f. (450)

tion with the same nonlinear local damage model as in the dy- )
namic case are discussed in this section. Similar to the dynaniige general solution to E¢44) can be expressed as

proble_m, a t_ensile bar of _Iengthis fixec_i at the Ie_ft ena=0. The _ U= (x,t) = x+ f()x+C. (46)
one-dimensional governing differential equation for the quasi-
static case can be written as follows: Since for any time at the fixed end, we have (x=0;t)=0, so
do 52 it follows that C=0.
do ’7_u=o (41) The final solution of the original problem is then found to be
2
de odx
Eg—E&
where u(x,t) denotes displacement, with parameterizing the u (xt)=e x+ F_ S (t—t)x, (47)
loading process. As illustrated in Fig. 13, the static bar is defined L

on a closed rectangle in thd-plane. Assuming an initial imper- which satisfies both the governing differential equation and the
fection is located ak=0, the strain localization is initiated & boundary conditions. Substituting, =(b+1)ey/2 and ec=(b
=0 wheno=0_ at timet=t, . The loss of ellipticity is then +1)g, into (47), we have
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u- (x,t)

+ .
2 tF*tL)X

As characterized by an elliptic equation, the strain field is instan-
taneously uniformly distributed over the whole localization zone,
and increases with time only:

(b+ 1)80
2

The strain rate inside the localization zone is constant for this
simple quasi-static bar problem and given by

} (b+1)e,
(X)) = ———.
H STy
4.2 Solution Outside the Localization Domain (€,,).
The governing differential equation outside the localization do-
main, i.e., inside}, , is similar to Eq(42) except that the tangent
modulus is positive due te—e_ <0 in Eq.(5b), namely,

t—t,

e (x,t)= r——

. (49)

(50)

aut Put
( x —SL)WZO xe[Xy(t),L] and te[t,tg].
(51)
Similarly, Eq.(51) can be rewritten as follows:
au* d(au*
(W—SL)g(W—aL) =0. (52)

One possible solution to E@52) can be obtained by solving the
equation

| =0 53
=0 (53)
with the result being
1+b
()= e Xt F(t) = O ey, (54)

2

Since at any time, the displacement continuity holds across the
moving boundary,(t)=v,(t—t,), that is,

u—(x=xp (1),t)=u’(x=x4 (t),1). (55)

] b =3
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Fig. 14 Evolution of localization along the bar
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Fig. 15 Normalized stress profiles corresponding to Fig. 14

(1+Db)eg \
ut(x,t)=e x+f(t)x+ C=(T+f(t))x+c. (61)

With the use of the initial condition at the fixed endtatt, ,
we haveu® (x=0t=t,)=0, so it follows thatC=0. Using the

continuity condition(55) again, we have

Substituting solution$48) and (54) into Eq. (55), we have

b+1 t—t
( )80(1+t L

(b+1) (b+1) t—t0=| 220t |ont—t)
+1)eg t_t|_ _ +1)eg 2 —t Upit=4 )= T Uptt—=l ),
2 (l+ tF_tL)Ub(t tL)f 2 Ub(t tL)+f(t) F L / (62)
(56) " which yields
So
b+1)equ, (t—t =5 1 _: -
f(t)=( )eoup ( L) . (57) 2 te—t,
2 tF_tL
The solution inQ);, then takes the form of
1.2
(1+b)80 Ub(t_tL)Z m
+ =
ut(x,t) 3 = (58) 1.0 b =3
o . . o E vy = 0.5v,
Therefore, the strain field is constant outside the localization zone, & 0.8 { = 1.25t
namely b 'l Tt
P - ———1=1.15¢
N aut  (1+b) 6 g %7 L
e (Xt)=——-=—5—¢0, (59) S 0'4_': B ettt t=1.05t
which satisfies the initial conditioa™ (x,t=t,)=¢, . 0.2 ]
Another possible solution may be obtained by solving the equa- J
tion 0.0 — T
0.0 0.2 0.4 0.6 0.8 1.0

d (ou”
( —sL)=0. (60)

ax | ax

The general solution of Eq60) can be expressed as
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Fig. 16 Damage evolution corresponding to Fig. 14
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Therefore, we have

. (b+ 1)80

Scaled Distance (x/L)

vy at t=1.25¢,

t

ut(x,t)=

The corresponding strai
(b+ 1)80

tf
> (1+tF*tL>X'

n field is then given by

et (x,t)= >

t—t
(1+ L

tF_tL)Z:‘:}L, tE[tL,tF],

(64)

(65)

4.3 Discussion and Demonstration. At the moving bound-
ary Xp(t)=vp(t—t.), the normalized strain and stress jump are
given by

Ae e"—g” b+1 t—t_ Ao o"—0o~

— =— and —= ——

€p €p 2 t’:*tL 0o 0o
(b+1)?( t—1t, \?

Note that the jumps in the static case depend on the loading
process instead of being constant as in the dynamic case, shown in
Eq. (40). The analytical solutions are illustrated in Figs. 14-16,
with the assumptions @t =1.25, andv,=0.%.. The change of
the model parameteb would result in the change of the limit
state. The effects of the speed of the moving boundgrgn the
evolution of localization are illustrated in Figs. 17, 18, and 19. As
can be seen, the essential features of quasi-static evolution of
localization can be quantitatively predicted by the proposed ap-
proach. Note that the apparent quasi-static equilibrium does not
hold through the whole bar because of the strain jump from the
damage model.

5 Concluding Remarks

Instead of invoking nonlocal models, a rigorous partitioned-
modeling approach is employed to obtain, via a similarity method,
a closed-form solution for a dynamic damaged bar with the use of
a nonlinear local damage model. The similarity method is a suit-
able tool to solve the problem involving moving boundary condi-
tions. It may reduce the second-order PDE to a second-order ODE
and map the moving boundary conditions to fixed boundary con-
ditions. It is shown that the predictions of the model continuously
depend on the model parameters. The analytical solutions for the
localized failure problem, under the given set of boundary and
initial data, and the material properties, are unique and stable ac-
cording to the theory of differential equations. The proposed ap-
proach can also be used to obtain a closed-form solution for a
quasi-static damage bar.

To obtain a closed-form solution, the major assumption made in
this paper is that the material surface of discontinuity is moving at
a constant speed. Based on the experimental data available, how-
ever, the evolution of localization appears to be an energy dissi-
pation and diffusion process, which should be dependent on the

which is in conflict with the condition that outside the localizatiorptress state and internal state variables. The similarity method
zone the strain field should not exceed the limit stegin In fact, nay ( _ ;
Eq. (65) is the same as Eq49), which implies that the whole bar as the localization evolution starting from the center of an isotro-

enters the post-limit regime without localization. Therefore thBiC sphere under dynamic loading. For a general case, however, a

final solutions outside the localization zone should be given

Egs.(58) and(59).

1.2
5.0 . b=3
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Fig. 19 Damage profiles for different
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used here may be used for a specific three-dimensional case, such

merical procedure must be invoked. With the assumption that
the evolution of microcracking in space is of diffusion nature, a
computational procedure is being developed to simulate the non-
linear damage diffusion process associated with the evolution of
dynamic material failure. As a result, the movement of the failure
interface will be determined by a nonlinear diffusion equation for
given stress state and internal variables. The closed-form solution
obtained here could be used to verify the computational procedure
in simple cases. If the evolution of localization can be predicted
via local models in subdomains in general, parallel computing
might be used incrementally for the large-scale simulation of
structural failure problems without invoking high-order models.

Acknowledgments

This work was sponsored in part by the Air Force Office of
Scientific Research, USAF with Major M. Chipley being program
director, and by the National Science Foundation with Dr. K.
Chong being program director. The authors are grateful to the
reviewers for discerning comments on this paper.

Transactions of the ASME



Appendix and

From a series of derivations, we obtain the following nonlinear 1
PDE for strain evolution: 7 2=Kké+. (A14)
+a(e2+ =0. Al
eutalext ooy B i gives
Suppose Eq(Al) has an existing solution in the form of a travel-
ing wave, that is, z=+[2(ké+1)]*2 (A15)
o(x,t)=f(x—c(t—t.)) for t=t_, (A2) Using Eg.(A5), we obtain the general solution for EA3),
where f=f(£&) andc is the wave speed. Substitutirig2) into namely,
(A1), we have f(&)=*[2(ké+1)]Y?—c?a. (A16)
2¢n ’ 2 " —
et (&) +alf () +H(HT"()]=0. »3) By converting back to the original variables through?), the

This ODE can be solved after using some variable transformi#lal solution is given by
tions. Equation(A3) can be rewritten as
g A3) o(x,t)=*[2(k(x—c(t—t )+ ]*—-c%a.  (AL7)

2
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The Instability and Vibration of

Rotating Beams With Arbitrary

Pretwist and an Elastically
. Restrained Root

Professor, The governing differential equations and the boundary conditions for the coupled
Mechanical Engineering Department, bending-bending-extensional vibration of a rotating nonuniform beam with arbitrary
Kun Shan University of Technology, pretwist and an elastically restrained root are derived by Hamilton's principle. The semi-
Tainan, Taiwan 710-03, Republic of China analytical solution procedure for an inextensional beam without taking account of the
coriolis forces is derived. The coupled governing differential equations are transformed to
be a vector characteristic governing equation. The frequency equation of the system is
derived and expressed in terms of the transition matrix of the vector governing equation.
A simple and efficient algorithm for determining the transition matrix of the general
system with arbitrary pretwist is derived. The divergence in the Frobenius method does
not exist in the proposed method. The frequency relations between different systems are
revealed. The mechanism of instability is discovered. The influence of the rotatory inertia,
the coupling effect of the rotating speed and the mass moment of inertia, the setting angle,
the rotating speed and the spring constants on the natural frequencies, and the phenom-
enon of divergence instability are investigatefDOI: 10.1115/1.1408615

1 Introduction ferential equation by taking many procedures of differentation.

Rotating beams, which have importance in many practical a he variation of the coefficients of the uncoupled governing char-

plications such as turbine blades, helicopter rotor blades, airpla (étfr:'sé'c thequatlon W'"d.be V?%t I?rgs. Takltn? thlet.Frobe?utﬁ
propellers, and robot manipulators have been investigated fo od, the corresponding €eight fundamental solutions of the

: . in thelghth-order ordinary differential equation can be expressed in
power series. However, the fundamental solutions will be diver-

apers by LeisspL], Ramamurti and Balasubramani, Rosen ) S
Pap y el e fent because the region of convergence of a power series is usu-

[3] and Lin[4]. Much attention has been focused on the inves oE
gation of the unpretwisted beam. Most of research of the vibratiGlfy limited.

problem of rotating pretwisted beam have been studied by usingConsidering the Timoshenko unpretwisted beam theory, the in-

numerical method because of its complexity. No analytical solfliience of shear deformation and rotatory inertia on the bending

tion for the vibration of a rotating pretwisted beam has beefiPrations of a rotating beam were investigated by numerous au-
presented. thors. Lee and Lif 6] studied numerically the _coupllng effect of

Considering the Bernoulli-Euler unpretwisted beam theory, tfge rotating speed and the mass moment of inertia on the natural
influence of tip mass, rotating speed, hub radius, setting angiéguencies and the phenomenon of divergence instability 4lin
taper ratio, and elastic root restraints on the natural frequenciesodfained the generalized Green function ofrah-order ordinary
transverse vibrations of a rotating beam were investigated g}rferential equation. This Green function was used to obtain the
many investigators. Lee and Ki&] obtained the exact solution closed-form solution for the forced vibration of a rotating
for the free vibrations of rotating unpretwisted beam with bendinjimoshenko beam. The prediction to the frequencies and the
rigidity and mass density varying in arbitrary polynomial formgnechanism of divergence instability of a rotating beam have not
by taking the Frobenius method. Lee and [&] studied the free been investigated.
vibration of unpretwisted Timoshenko beams. The two coupled For a nonrotating pretwisted beam, approximation methods are
characteristic differential equations governing the bending reery useful tools to investigate the free vibrations of pretwisted
sponse uncouple into one complete fourth-order ordinary differebeams where it is difficult to obtain exact solutions even for the
tial equation with variable coefficients in the angle of rotatiorsimplest cases. These methods are the finite element m¢nd
The four fundamental solutions of the uncoupled fourth-order othe Rayleigh-Ritz method[8]), the Reissner method9]) the
dinary differential equation were obtained using the Frobeniwsalerkin method[10]), and the transfer matrix methdfl1,12)).
method. The frequency equation was expressed in terms of thia [12] derived the exact field transfer matrix of a nonuniform
four fundamental solutions. Similarly, one can decouple the twenrotating pretwisted beam with arbitrary pretwist and studied
coupled governing characteristic differential equations of a rotahe performance of a beam with elastic boundary conditions.
ing pretwisted beam into one complete eighth-order ordinary diftowever, the exact field transfer matrix of a rotating pretwisted
beam can not be derived in a similar way.

Contributed by the Anplied Mechanics Division ofE A © For a rotating pretwisted beam, Rao and Carngtg used the
e ot o cowe,  Holzer-Myklesiad approach to determine the naiural frequencies
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decem@Nd mode shapes of a cantilever pretwisted blade. Subrahmanyam
ber 12, 1999; final revision, August 23, 2000. Associate Editor: R. C. Benson. Diand Kaza[14] studied the vibrations of a cantilever tapered

cussion on the paper should be addressed to the Editor, Professor Lewis T. Whe??étwisted beam by using the Ritz method and the finite difference
Department of Mechanical Engineering, University of Houston, Houston, TX 77204- hod. Subrah Ik . d d th .
4792, and will be accepted until four months after final publication of the paper isdirethod. Subrahmanyam, Kulkarni, and Has] used the Reiss-

in the ASME DURNAL OF APPLIED MECHANICS. ner method to study the vibration of a rotating pretwisted cantile-
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ver Timoshenko beam. Sisto and Chdig| proposed a finite
element method for a vibration analysis of rotating pretwisted
beam. Young and Liff17] studied the stability of a cantilever
tapered pretwisted beam with varying speed by using the Galerkin
method. Kar and Neog18] used the Ritz method to study the
stability of a rotating pretwisted cantilever beam. Hernri&8]

used the finite difference method to determine the natural frequen-
cies of a rotating pretwisted nonuniform cantilever beam. More-
over, the author used the mode-superposition method to determine
the forced vibration of the beam. Surace, Anghel, and ME26k
derived the approximate method based on the use of structural
influence function to determine the natural frequencies of a rotat-
ing cantilever pretwisted Bernoulli-Euler beam. As a result, no
analytical solution has been given to the coupled bending-bending
vibrations of a rotating nonuniform beam with arbitrary pretwist
and an elastically restrained root.

In this paper, the governing differential equations for the
coupled bending-bending-extensional vibration of a rotating non-
uniform beam with arbitrary pretwist, an elastically restrained
root, setting angle, hub radius, and rotating at a constant ang
velocity, are derived by using Hamilton’s principle. For an inex:
tensional beam, without taking account of the coriolis force’s ef-
fect, the three coupled governing differential equations are re-
duced to two coupled equations and the centrifugal force is
obtained. The reduced coupled governing differential equations ) )
are transformed to a vector characteristic differential equation. = 1/t a_”) I A I
The frequency equation of the system is derived and expressed in - ALl at at at
terms of the transition matrix of the vector governing equation. A
simple and efficient algorithm for determining the semi-analyticayhereA is the cross-sectional area of the bedyr, Ky, K1,
transition matrix of the general system with nonuniform pretwisindK, are the translational and rotational spring constants at the
is derived. The frequency relation and the mechanism of instapgft end of the beam in thgandz-directions, respectively. is the
ity of unpretwisted and pretwisted rotating beams are investigatd@ngth of the beanyp is the mass density per unit volume,,, £,

The influence of the rotatory inertia, the coupling effect of thare the normal stress and strain in thelirection, respectively.
rotating speed and the mass moment of inertia, the settidgplication of Hamilton's principle yields the following govern-
angle, the rotating speed and the spring constants on the natiltgldifferential equations:

1 Geometry and coordinate system of a rotating
retwnsted beam

2
pdAdx “

frequencies, and the phenomenon of divergence instability are P 2w pr P P
investigated. El +EI ( ow
a2\ T2 yzz?x2 ax\ " ax
d Ja3w J173v Qzajaw Jau
2 Pretwisted Beam T ax |\ Warzax Tk T ax | ax Tax

2.1 Governing Equations and Boundary Conditions. 2w . dug
Consider the coupled bending-bending-extensional vibration of a _PA(W_Q 5'”97
pretwisted and doubly symmetric nonuniform beam elastically re-
strained, mounted with setting angteon a hub with radius,
rotating with constant angular velocify, as shown in Fig. 1. The +0Q COS@U) =0, (5)
displacement fields of the beam are

. [dug .
+pAQ sind 7+Q sin Ow

9 2w v\ 9 v
oW dv ———|Ely;=—z +El;m— |+ —[N—
u=up(X,t)— za—y v=v(xt), w=w(x¢t), (1) ax? IX ax? ax\  Ix
i i - i +ﬁJ&3W+J &SU)QZ e 3,
Wh_erex, y, andz are the fixed frame_ coordma_tets:s the tlm_e ax | D520 T V2520 Ix | X ax 25
variable. The velocity vector of a poirtk, y, z) in the beam is '
given by A(azu o aauo A cosd (7u0+Q o
" PA| 22 cos el cos r sin 6w
V= E+Q sinf(z+w)+Q cosf(y+v)|i .
+0Q cos&v) =0, (6)
20 costx+R+u) [j+] X _ 0 sina(x+R+u) |k
—_— r— n .
n st v & s ! o Aa o —2pAQ 0 W+ eav + pAQ2(x+ 0
@ o P p sin cos iR (X+ug)=0,
_ _ (7)
The potential energy and the kinetic energy of the beam are
P oy oy and the associated boundary conditions:
1 fo Ade » aw(0)]? L 201) atx=0:
=5 Tyx€ Xt 5 — = K7w4(0,
2 o Ja XXE XX 2 z6 IX 2 zT UOZO, (8)
1 a0n]? 1 5 9w v oW
7 Kyo| =5 | T3 Kyo®(0D), ©) EBlyyoz +Elyr =Ky =0, 9)
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d £ 62W+E| 9%v oW ] J*w v
Y ox2 YZ %2 ax  Yoxot?

ox Xaxat? 1
w o m=p(X)A(X)/[p(0)A(0)], n(§)=a2f m(x)(r +x)dx,
+02 3y +3,—— | +K,rw=0, (10) ¢
X XX
r=R/L, V=vulL,
. 72 . s ) o . . W=w/L, a?=p(0)A0)QLY[E(0)l,y(0)],
vigxr T Elazga Ky =0, (1) Bi=KLITEO),(0)],  Bo=K,LI[E(0)1,(0)],
Bz=KyL/I[E(0)1,(0)],  B4=Ky7L/[E(0)1,y(0)],
2 2 3 3
el Y v) VA A 7=3,(0)/[p(OAO)L?],  A%=p(0)A(0)w’LY/[E(0)I,(0)],
x|\ Yrox? 22 %2 ax  roxot? “Foxot? )
) 5 &=xIL, 7=t/L JE(O)Iyy(O)/p(O)A(O),
1%
+02 J—+J,— |+ = i
Q (Jxax Jzax) K,tw=0, (12) . B; . 1 19)
gt TP 1+
atx=L: the dimensionless governing characteristic differential equations
' of motion for harmonic vibration with circular frequenay are
written as
N(L)=0, (13) d? d?w d?v| d dW)
aF ( Brvag Bﬂdez) df(n a
4 L d{ dw  dv
Elyy— 7 TEly777 =0, (14) 7( 2+A2)d§(gy dE +gxd§)+m(a Sir? 6+ A2)W
+ma? sind cosfV=0, (20)
El i +EI *v N w J W J v d? d>w dvy d [ dv
ax\ Y ox? Y2 o2 ax  Yoxat? “Xoxot? B 4B |+ —n—
d§2 yzd§2 sz§2 df df
+QZ(J Mo (90) 0 (15) d/ dw  dv
Yox | Xogx | o 2 el 2 2
—n(a®+ A )dg(gx TMTT: +m(a?cog 0+ A?)V
2w s +ma?sinfcosdW=0, £e(0,1) (21)
Elyz IX2 +E'zleXz’ =0, (16)  and the associated dimensionless elastic boundary conditions are
given as follows:
até=0:
- P*w £ 3%v N v Pw v FENY q2v dw
ax | Evigz TRz | =N o= am o m( Bny§f+Bsz§Z) *md—§=0, (22)
W Jv 2 2
+QZ(J—+J ) 0, 17 d[, dw _ dv) dw
ax T (7 22| 4g Byyd_§2+Byzd_§2 Nt n(a?+A?)
. . o dw dv
whereE is Young’s modulusl is the area moment inertia of the X gyd— +gxd— + y2W=0, (23)
beam.J,, J,, andJ, are mass moment of inertia per unit length ¢ ¢
about thex, y andz-axes, respectively is the centrifugal force. It d2w d2v dv
is observed that in Eq7) the centrifugal forceN is related taug, 732( By~ + BZZ—2> — Y357 =0, (24)
v, andw. The centrifugal forceN is the parameter of Eqé5) and d¢ d¢ d¢
(6) in terms ofug, v, andw. Thus the system is nonlinear. It is d d2w d2v dv
hard to obtain the solution of the system. But if an inextensional 742{_(Byz_2 +BZZ_2) —n— + (a?+A?)
beam without the Coriolis force effect is considered, the system dé dé dé dé
becomes linear and the corresponding solution can be easily ob- dw av
tained. Moreover, the lateral vibration of a blade subjected to low X| Oy—==+9, = { +yaV=0 (25)
rotational speed is dominant and the effect of the Coriolis force d¢ d¢
may be neglectefil4]. at
For an inextensional beam, without taking account of the Cori- N N
olis force effect, the centrifugal force in EqS,) and(13) can be B d°w B d=v —0 26
expressed as Wagz tByqe Z =0 (26)
d (B d2W+B d*v + p(a®+ A?) + dv) 0
L 2 ez | T la Oy 7 T 7|=0,
N(x):QZJ pA(R+X)dx. s dE\7Vdg T TVide Ydg  Trdg
x 27
d2w d2v
(28)

In terms of the following dimensionless quantities,
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Bij=E(X)1ij(x)/[E(0)1y,(0)],

Li=xy.z g=

Byz@ + BZZP = 0,

3,13,(0),
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d d2w d2v , ) dw dv Multiplying Eg. (31) by a;5and Eq.(32) by ag and subtracting the
az Bszgf + Bzzd—gz +n(a+A )( gxd—g +gzd_§) =0 latter from the former, one obtains

(29) dx, <
It should be noted that considering the velocity fié®i results dag - ]21 CiXj, (34)

in the coupling effect of the rotating speed and the mass moment
of inertia, n(e®+A?)d(g,dWdé+g,dV/dé)/d¢é and n(a? where
+A?)d(g,dWIdé+g,dV/dE)/dé. However, if the displacements
of any point in the cross section of the beam is the same as that of
the center of the cross section, i.a=5uUg(x,t), v=v(x,t), and C3= —(azd1s— 1386)/S, Cs= — (a1~ a1536)/S,
w=w(x,t), these effects cannot be consider¢i7]). Further-
more, when the setting angle is zero, the governing equations C5= — (810816~ a2086)/S, Ce= —(Ag16— A1686)/S,
become the same as those given by Rd$gn _ _ _ _

It can be observed that the second terms in E2@. and (21) C7=—(aga1e— a1g86)/S, Cg=—(a7a16— a1786)/S, (35)
present the effect of the centrifugal fona¢o increase the stiffness in which s=a,a;g—ajag. Similarly, multiplying Eq.(31) by a;;
of the beam. Because the second and third terms in@fsand and Eq.(32) by a; and subtracting the latter from the former, one
(21) are positive and negative, respectively, the coupling effect obtains
the rotating speed and the mass moment of inertia, i.e., the third

C1= — (85816~ A1536)/S, Co= — (4216~ A1436)/S;

8
terms in Eqs(20) and(21), presents an axial compressive force to dxg _ E — 36
decrease the stiffness of the beam. Moreover, because the cou- d_g_ = CiXi» (36)
pling effect includes the product of the rotating speednd the
rotatory inertiaz, _the coupling effect on the frequencies is greathere
for the system with large parametersand 7. = — (agay—asay)/s, o= —(asa5,—a.ay)fs,
22 Solution Method. C3=— (83811~ 131)/S, C4=—(@za1,—21,8,)/S,
2.2.1 Transformed Vector Governing EquatiorDefining the Cs= — (10811~ 8021)/S, Ce=—(@ga11— A1931)/S,
state variables as C;=—(agan—a1g1)/s, Cg=—(a,an1—a;ay)fs, (37)
3 _dw _d?w _dw in which's=aga;;— a3, . Based on the relation80), (34), and
X =W, 2T XT g Xt (36), the transformed vector characteristic governing equation can
be obtained as follows:
v av d?v ddv (30) dx
Xs=V, X¢==%, X7===3, Xg=—73,
° o dé T dé TS d—§=A(§)X(§), (38)
Egs.(20) and(21) can be written as, respectively,
where
dx, dxs dx, dxy dXxg dx; T
ald_§+a2d_§+a3d_§+a4d_§+asxl+a6d_§+a7d_§ X(E)=[X1 Xo X3 X4 X5 Xg X7 Xg]',
o 1 0 0O O 0 0 O
dXg dXs
+a8d_§+a9d_§+a10>(5:0- (31) 0O 01 0 0 0 O
dx4Jr dx3+ dx2Jr dxlJr N dx8Jr dx; °c o0 0 1 0 000
Qi Ty Taig o T TausXyt @i, Tai7 o Ci C, C3 C4 Cs Cg C; Cg
dé¢ dé¢ d¢ d¢ dé¢ dé¢ A(8) = . (39)
0O 0 0 0 0 1 0 O
dxg dxs
+a1 _dg +a19d_§+a20x5:0l (32) 0 0 0 0 0 0 1 0
0O 0 0 0 0 0o o0 1
where T
4B LC; C C3 C Cs Csg C; Cg]
a;=Byy, a2=2d—gy, in which the superscript T” is the symbol of transpose of a
matrix.
dBy, 2, \2 dn o299 200 F Equation.The solution of Eq(38) can b
ag=———n+p(a?+Adg,, az=——+p(a?+A%)—2, 2. requency Equation.The solution of Eq(38) can be
d¢ d¢ d¢ expressed as
as=—m(a’si? 6+A%), ag=a;=B,,, X(&)=T(&0)X(0), (40)
dByz d2|3yZ 5 5 where T(&,0) is the transition matrix from 0 t@, to be deter-
a7=alz=2d—§, as=313=d—§r+ n(a”+A%)gy, mined. Moreover, the state variableséat 1 can be written as
8
2, 2y 9% 2 )= Ti(10x(0), i=12,...8 41
ag=a=n(a"tA )d_g' a;0=a;5= —Ma? sin g cos, Xi( )_1:1 ij(1,0x(0), i=12,..., (41)
dB,, d2B,, where Tj; is the elements of the transition matrix from O to 1.
a16=B,;, a17=2d—, a18=?—n+ n(a?+A?)g,, Expressing the boundary conditiorig2)—(25) in terms of the
§ § state variable$x,(0),x,(0), . .. xg(0)} and substituting Eq41)
dn dg into the boundary condition®6)—(29), the frequency equation of
9=~ 4z + p(a?+A?) d_fz a=—Mm(a?cog +A?). the system is obtained,

(33) | xijlaxs=0, (42)

Journal of Applied Mechanics NOVEMBER 2001, Vol. 68 / 847



where It can be observed that if the coefficient mathixn the Peano-
ey — 20 _ Baker series is constant, the transition maté#) is the same as

X117 X147 X157~ X16~ X18= Vs X127~ Y1Ls Eq. (45). Hence, when the number of subsections approaches in-

= 7,,B,(0), = 5.,B.,(0): finity, the approximate transition matrix becomes the exact one. ]t

X13= 7128y (0): - Xa7= 712By(0) can be obtained at any desired level of accuracy by taking a suit-

X21= Y21, X22= Y2d n(@®+A?)g,(0)—n(0)], able number of subsections. It should be noted here that while
. numerically determining the natural frequencies, the rate and ten-
X237 ¥22Byy(0),  X24= v2:Byy(0), dency of the convergence of the solutions will be different accord-
_ _ 2, A2 ing to the coordinate positios, in the piecewise constant matrix
X25=0, X26= y2am( e+ A%)gx(0), selected as different values betwden_;, & ]. In this paper, for a
Xor= 72zB§z(0): Xo8= Y22ByA0); better rate of convergencs, is taken to be §_;+ &;)/2.
X31= X32= X34= X35= X38= 0, X33= ¥3ByA0), 3 Frequency Relations
X36= — Y31, X37= Y3:B,A0); 3.1 Frequency Relations of Pretwisted Beams.The rela-
" tions among the setting angk the rotatory inertias, and the
xa1=0,  Xa2= vaem(a®+ A%)gx(0), frequencyA of rotating beams are studied. Meanwhile, one ex-
= 7,,B!(0) = 7,5Bu,(0) pects to predict the parameters of some system according to the
X43= YazPya V) Xaa= Ya2Pyz V) parameters of another system. Two systems denotedyaant
=Y, = @?+A?2)g,(0)—n(0)], “b” have the same parameters excépty, andA. It is observed
Xas=var Xag= vad 0l 180)~n(0)] from the governing Eq920) and (21) that if there exist the fol-
Xa7= YaB1A0),  Xag= va:B,A0); lowing relations, the two systems are similar:
X5=Byy(LDT5(L0+By(1)T(L0, j=12,...8; na(@?+ AL )= my(a®+A)), (47)
Xey= n(a?+ A%y (1) T (1,0 +Bjy(1)Te(1,0 o Sitf 0+ A = SIfF 0y + AL (48)
+Byy(1) T4(1,0+ 7(a?+ A?)g, (1) Te;(1,0 a?cod 0,+ A2 =a?cod f,+ AL, (49)
+By(1)T7(LO+By(1)Tg(1,0, j=12,....8; sin 26, = sin 26y, (50)

wherei denotes théth frequency. Assume that all the parameters

X7 =By DT5(LO+BADT7(10,  j=12,....8; of the systema are given and the parametelrs,, 6, ,A,;} are

Xgj= n(a?+ /\2)(‘;,X(1)-|-2](1,0)4r B)(1)T3(1,0 unknown. It is obvious that Eq$48) and(49) do not be satisfied
simultaneously unlesg,= 6, and A=A, ;. SubstitutingA ,
+By (1) T4(1,0+ n(a®+ A%)g,(1)Tg;(1,0) = Ay, into EQ.(47), 7=, . Itis trivial that the two systems are

, . the same as each other. In other words, one can't predict exactly
+BADT7(LO+B,A1)Tg(1,0,j=1.2,....,8. (43) the parameters of the systdmfrom the parameters of the system
Letting y1,= ¥21= ¥a1= Yar=1 and y1o= y2o= 3= 74,=0, the @ Via the relation$47)—(50).
frequency equation for a cantilever beam can be obtained. However, if the relation(49) is approximated and its effect is
) ) . ) ) very small, the parameters of the systbroan be accurately pre-
([21]) that the following Peano-Baker series is the closed-forqag), and (50). It is observed from Eq(21) that the integrated
transition matrix of Eq(38) parameter of the relatiof49) is the coefficient for the deflection
& X1 v. When the pretwisted angle is small, the deflectiois domi-
A(Xl)f A(x2)dx,dy,; nantand the effect of the relatiga9) is very small. Moreover, the
4 &1 stiffer the system is, the larger the frequencies are. For a stiffer
system its frequency is greatly larger than the rotating speed

¢
T(§1§i—1)=|+f A(Xl)Xm"—f
-1
+ ff A(Xl)fX1 A(Xz)fxz A(x3)dxsdx2dx, and the relatior{49) can be approximated.
i-1 §i-1 §i-1

3.2.1 Frequency Relations and Mechanism of Instability
(44) of Unpretwisted Beams.Letting V=®=0 in Egs. (20)—(27),
the governing equations and the boundary conditions of an un-

However, it is impossible to determine the multiple integrals Qfretwisted Rayleigh beam can be obtained, respectively, as
the series analytically or numerically. Hence, an approximate tragyows:

sition matrix is required. In this paper, a simple and efficient al-

+...

gorithm is developed to find the approximate transition matrix. d? d®w\| d dw

imati ici - iecewi —| By | — 73| [n— n(a®+A2)g,] —

By approximating the coefficient matri&k(£) by n piecewise dez |ty ge? dé v e
constant coefficient matrices(s;), i=1,2,...n, one obtains a

characteristic governing equation with constant coefficient matrix. —m(a?®sir? 6+ A?)W=0, (51)
Here s, can be any value betwed®;_;,&;] and & denotes the até=0
coordinate position at the end of thd subsection. Consequently,

the transition matrix of théth subsection frong; , to £ can be d>w dw
obtained: Y1Byy gz & Mgy - 0, (52)
T(£&_)=rEED 5 fe(§.4.8). (45) d d?w _— dw
After applying the composition property of the transition matrix, 22 &(Byy dé&? —In=mnla’+A )gy]d_g +yaW=0,
e, T(&41,&6-1)=T(&+1,8)T(& ,&-1), the overall transition (53)
matrix is obtained: _1.
até=1:
1
d>w
T0=]1 T(s), ée(¢-1.), sc(&-1.6). (46) & =0 (54)
i=]
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d dw dw pen to a pretwisted Bernoulli-Euler beam. Because the effect of
ax ( B”W) —[n—n(a?+ Az)gy] d—§=0. (55) rotatory inertia is to decrease the frequencies, the instability will

also happen to a pretwisted Rayleigh beam. However, for a
One can obtain from Eq$51)—(55) the relationg47) and(48)  pretwisted Bernoulli-Euler beam with>0, y,,>0, and y3;>0
which can be satisfied simultaneously. Given all the parametersitsf fundamental frequency will be greater than the value of zero.
the systena and the setting anglé,, for the systenb, the corre- The reason is that when the hub radiuand the rotational root
sponding frequencied, ; and the rotatory inertiag, of the sys- spring constants,; and y;; are increased from zero, the funda-
tem b can be predicted exactly by using the relatigd8) and mental frequency of a pretwisted Bernoulli-Euler beam is in-
(47), respectively. creased from zero. This means that the instability will not happen
It should be noted that the critical state of instability A$ to a pretwisted Bernoulli-Euler beam with>0, y=y4=1,
=0. If A2<0, the natural frequency is imaginery and the divery1:>0, andyz>0.
gent instability([6]) occurs. Substituting\, ; and the associated 41 2 Unpretwisted Beam.Letting #=v,=r=0 in Eq.
parameters into the relationgl7) and (48), one can predict (g1p), the corresponding fundamental frequency and the mode
whether the divergent instability will happen to the systerhet- shape of an unpretwisted Bernoulli-Euler be@iz—= are ob-
ting Agfo, the critical rotatory inertia and the critical settingtained, respectively,
angle are obtained from Eqg}7) and (48), respectively,

A2 a2 6 Ai=a?, W=wgé. (62)
itical= a1+ , 5 o .
(70)cticar= 7al ai @) (56) One can predict via Eq48) that whené,= 7/2, the associated
(6p) eriticar=SIN”_ */Sir? 05+ Ag,llaz (57) fundamental frequencyy,;=0. When the hub radius or the

. » ) rotational root spring constar®, is increased, the fundamental
under the following necessary condition of the divergentequency of the beam withi, = /2 is increased to be larger than
instability zero and the instability will not happen. It is well known that

Sir? 6a+A,3211/a2<1- (58) when the §etting. gnglg is decreased, the frequencies are increased.
' Thus the instability will not happen also for the beam wjgh
Because the effects of the rotatory inertig and the o r>0,8,>0 andé</2. Itis concluded that in spite of the
setting angled are to decrease the frequencies of the sysetting angleg and the rotating speed the instability does not
tem, under the condition58) the domain of instability is happen to a Bernoulli-Euler beam wit,— %, B8,;>0, andr
{(6,7)| sin (sir? 6,+AZ [ a®)< 6=<m/2, = 1,(1+ A2 /a?)}. >0. On the other hand, it can be observed that whetd or
For Bernoulli-Euler beams without taking account of the effeg8; >0, the fundamental frequency; of the beam withB,—
of the rotatory inertian, only the relation(48) exists. The follow- and =0 is increased to be larger thanand the condition of
ing frequency relation can be obtained by substracting the relatimstability (58) is not satisfied. This predicts also the above
in the (i +j)th mode by that in théth mode, conclusion.
2 2 2 2 Because the frequencies of Rayleigh and Timoshenko beams
AGii = Aqi= b~ Abji- (59) taking account of the rotatory inertia are smaller than those of
It should be noted that for Bernoulli-Euler beams the condition d&€rnoulli-Euler beams under the same conditions, the fundamen-
instability (58) is sufficient. tal frequencies of the unpretwisted Rayleigh and Timoshenko
beams withn>0, §=r=,=0, andB,—> will be less thana
. . and the necessary condition of instabilify8) is satisfied. The
4 Instability of Rotating Beams fundamental frequency is smaller tharand the necessary condi-
tion instability (58) is satisfied untilr and 8, are increased to be
large enough. In other words, the instability will happen to the
unpretwisted Rayleigh and Timoshenko beams véth-, 8,
4.1.1 Pretwisted Beam.Consider the free vibration of >0, >0, and»> 7gitcal -
pretwisted Bernoulli-Euler beams with infinite translational root i o ] )
spring constant and without the rotational root spring, 8, 4.2 Beam With Infinite Rotational Root Spring Constants.

;7121; Y32~ 7’.41t: %h ar;d 711.:b7'2t2.: 731f: ?"‘de:t?'dlt is ?ssumedd i 421 Pretwisted Beam.Consider the free vibration of a
at there exists the iree vibration of rigid-body motion and e, with infinite rotational root spring constant and without

mode shape is translational root spring, i.e.y11=y20= y21=v4,=1 and vy,
W=wy¢ and V=uyé, (60) =7v21=v32= ya1=0. It is assumed that there exists a rigid-body
free-vibration motion and its mode shape is

4.1 Beam With Infinite Translational Root Spring
Constant.

wherew, andv, are constants. Equatidf0) satisfies the bound-
ary conditions(22)—(29). Substituting Eq(60) into the governing W=w, and V=uy, (63)
Egs.(20) and(21), one can obtain wherew, and v, are constants. Eq63) satisfies the boundary
—Woa?m(r + &)+ m(a? sir? 0+ A?) Ewg+ ma? sin 6 cosbu oé conditions (22)—(29). Substituting Eq.(63) into the governing
Egs.(20) and(21), the following conditions are obtained:
(a? sir? 6+ A?)wo+ a? sin 6 cosbv =0,
—voa?m(r + &)+ ma? sin 6 cosOwyé+ m(A%+ a? cos O)vé , 5 5
a2 sin 6 cosOw,+ (a? cog 6+ A?)v=0. (64)

=0, (61) Equation(64) results in that the eigenvalue and the mode shape
where the first terms of Eq61a) are derived from the second are A?= — «? and v,=cotéw,. This means that the rigid-body

terms of Eqs(20) and(21), respectively. Letting =0, the follow-  free-vibration motion is unstable. Moreover, when the transla-

=0,

ing conditions are obtained: tional root spring constant is increased to a critical value from
(A%= a? cod 6)W0+a2 sin 6 cosfu =0, zer(;, th(_a eigenvaluef,‘,2 is increased to zer(_) from the vglue of

—a“. Itis concluded that when the translational root spring con-
a? sin f coséwg+ (A% — a? sir? 6)v,=0. (61) stant is smaller than the critical value, the instability will occur.

The first two eigenvalues arkf=0 andA3=a?. Because the 4.2.2 Unpretwisted Beam.Consider the free vibration of
square of fundamental frequency is zero, the instability will hapigid-body motion of a unpretwisted beam with infinite rotational
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Table 1 Convergence pattern of dimensionless frequencies of a rotating pretwisted cantilever doubly tapered beam [8,,
=(1-0.1§)*cos? £m/6+4(1-0.1£)*sin? £m/6, B,,=4(1-0.1£)*cos? £m/6+(1-0.1£)*sin? £m/6, B,,=1.5(1-0.1§)*sin £m/3, a=3.0,
n=0]

Number of

Subsections Aq Ay As Ay Asg
5 5.100 7.791 23.747 44.036 63.632
10 5.119 7.775 23.802 43.897 63.790
20 5.124 7.771 23.817 43.861 63.836
30 5.124 7.770 23.820 43.854 63.844
40 5.125 7.770 23.821 43.851 63.848
50 5.125 7.769 23.821 43.850 63.849
60 5.125 7.769 23.822 43.850 63.850
70 5.125 7.769 23.822 43.850 63.850

root spring constant and without the translational root spring. Sub-It is concluded that for both pretwisted and unpretwisted beams
stituting the mode shap®/=w, which satisfies the boundary with infinite rotational root spring constants the instability will
conditions (52)—(55) into Eq. (51), the following condition is occur when the translational root spring constant is smaller than a
obtained: critical value.

a? sir? 9+ A%=0, (65)

which satisfies the condition of instabilit$8). Letting 6=0, one 5 Numerical Results and Discussion

obtains from Eq(64) that the fundamental frequengy is zero. To demonstrate the efficiency and convergence of the proposed
When the translational spring constant is increased, the fundamerethod, the first five frequencies are determined for a rotating
tal frequency is increased from zero. The condition of instabilitgretwisted cantilever doubly tapered beam. In Table 1, the conver-
(598) is satisfied until the translational root spring constant is larggence pattern of dimensionless frequencies of the beam is shown.
than a critical value. This means that when the translational rdbtshows that the natural frequencies determined by the proposed
spring constant is smaller than a critical value, the condit&8) method converge very rapidly. Even when the number of subsec-
will be satisfied and the instability will occur. Because for Raytions is only five, the differences between these solutions and the
leigh and Timoshenko beams which the effect of rotatory inertia énverged solutions are less than 0.5 percent.

considered their fundamendal frequencies are smaller than that oFor comparison, a uniformly pretwisted cantilever beam with
a Bernoulli-Euler beam under the same parameters, the conditmnstant cross section is considered. The natural frequencies ob-
(58) for Rayleigh and Timoshenko beams is satisfied as soon tained by the proposed method as well as those given by Subrah-

the condition for a Bernoulli-Euler beam is satisfied. manyam and Kaz#@l4] and Lin [12] are tabulated in Table 2.
Table 2 Effect of inertia constant  » on the dimensionless frequencies of a rotating pretwisted cantilever beam [Byy=cos2 P30
+45sin? 0, B,,=4 cos? éb+sin? £, B,,=15sin2 £b, a*=a/3.51602]
= =0. 1 =0.001
Mode 7=0 7=0.000 7=0.00
D a* Number # ## present present present
30 deg 0 1 3.5245 3.5245 3.5245 3.5235 3.5149
2 6.9585 6.9585 6.9586 6.9526 6.8994
3 22.339 22.338 22.339 22.298 21.945
4 42.896 42.896 42.898 42.649 40.576
5 63.423 63.419 63.423 63.138 60.758
1 1 5.1824 - 5.1824 5.1804 5.1632
2 7.1461 - 7.1462 7.1386 7.0705
3 24.055 - 24.055 24.010 23.618
4 43.735 - 43.737 43.479 41.335
5 65.103 - 65.104 64.811 62.367
3 1 8.2156 - 8.2156 8.1990 8.0502
2 11.749 - 11.748 11.743 11.694
3 34.834 - 34.834 34.763 34.136
4 49.804 - 49.805 49.488 46.845
5 77.191 - 77.193 76.843 73.907
90 deg 0 1 3.5900 3.5899 3.5900 3.5882 3.5716
2 6.4847 6.4849 6.4850 6.4815 6.4500
3 24.531 24.530 24.530 24.457 23.833
4 37.457 37.459 37.460 37.317 36.096
5 72.973 72.962 72.965 72.470 68.460
1 1 5.1120 - 5.1121 5.1086 5.0780
2 6.8250 - 6.8253 6.8202 6.7753
3 26.041 - 26.039 25.960 25.281
4 38.533 - 38.536 38.385 37.102
5 74.400 - 74.392 73.887 69.798
3 1 7.9774 - 7.9776 7.9688 7.8908
2 11.804 - 11.804 11.792 11.688
3 35.872 - 35.871 35.755 34.741
4 46.044 - 46.047 45.841 44.101
5 84.936 - 84.929 84.353 79.672

#: given by Subrahmanyam and KaZa]; ##: given by Lin[12]
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Table 3 The frequency relations between rotating unpretwisted Bernoulli-Euler beams [%=0, r=0, Byy=(1—0.2§)3, m

=(1-0.28)]

« 0 A AS A3 A=A AS=A3
0 deg 17.8707 450.0783 3223.7197 432.2076 2773.6414
2 45 deg 15.8707 448.0783 3221.7197 432.2076 2773.6414
BrL—>® 90 deg 13.8707 446.0783 3219.7197 432.2076 2773.6414
Bo—> 0 deg 55.5119 648.9802 3750.9751 593.4683 3101.9949
6 45 deg 37.5119 630.9802 3732.9751 593.4683 3101.9949
90 deg 19.5119 612.9802 3714.9751 593.4683 3101.9949
0 deg 16.8900 421.6602 3023.3622 404.7702 2601.7020
2 45 deg 14.8900 419.6602 3021.3622 404.7702 2601.7020
Bri—> 90 deg 12.8900 417.6602 3019.3622 404.7702 2601.7020
Bo=50 0 deg 53.6052 616.3647 3540.1596 562.7595 2923.7949
6 45 deg 35.6052 598.3647 3522.1596 562.7595 2923.7949
90 deg 17.6052 580.3647 3504.1596 562.7595 2923.7949

Subrahmanyam and Kaf&4] studied the vibration of a rotating over, the instability will happen to the pretwisted Rayleigh
pretwisted cantilever beam by using the finite difference meth@hd Bernoulli-Euler beams with infinite rotational root spring
and the Ritz method. Lif12] studied the vibration of a nonrotat- constants.
ing nonuniform pretwisted beam by using the modified transfer The influence of the rotating speed on the first three natural
matrix method. Subrahmanyam and Kd44] did not consider frequencies of doubly tapered beams with nonuniform pretwists is
the effect of the rotatory inertia and the coupling effect of thehown in Fig. 3. It is observed that the effect of the rotating speed
rotating speed and the mass moment of inertia. Without considen the first two frequencies are almost the same for all three
ing these effects, i.e=0, excellent agreement is obtained besystems. However, the effect on the higher mode frequencies are
tween the previous numerical results and those by the propogpgdatly different.
method. Moreover, the effect of the inertia constanwill de- Figure 4 shows the influence of the total pretwist anglen
crease greatly the natural frequencies. The effect of the inertfee first four frequencies of cantilever beams with different ratio
constanty on the natural frequencies of higher modes is relativelgf area moment inertia in theandy-directionsl ;7(0)/1yy(0). If
greater than that on the natural frequencies of lower modes. As the cross section of the beam is almost square, e.g.,
rotating speedr increases, the effect of the inertia constgrmn 1,,(0)/ly(0)=2, the influence of the total pretwist angle on
the natural frequencies increases. The reason is that the couptimg frequencies is small. However, whierz(0)/11(0)= 100, the
effect includes the product of the rotating speednd the rotatory influence of the total pretwist angfe on the frequencies is great.
inertia 7. The influence on the frequencies of higher modes is greater than
The frequency relation$48) and (59) between rotating un- that on the frequencies of lower modes.
pretwisted Bernoulli-Euler beams is proved numerically in Table
3. The frequency relation&7)—(50) among rotating pretwisted .
beams are proved numerically in Table 4. A pretwisted cantilevgr Conclusion
beam with a small pretwisted angle is considered in Table 4. It isA solution procedure for the bending-bending vibration of a
shown that the prediction of frequency via the relati¢fid, (48), rotating nonuniform beam with arbitrary pretwist and an elasti-
and(50) is very accurate. cally restrained root is derived. A simple and efficient algorithm
Figure 2 verifies the facts revealed in Sections 4.1.1 and 4.Zar deriving the semianalytical transition matrix of the general
that the instability will happen to a pretwisted Rayleigh beam withystem with nonuniform pretwist is proposed. The algorithm can
infinite translational root spring constants, but not to a pretwistds applied to linear control systems. The divergence in the Frobe-
Bernoulli-Euler beam withi >0, §<m/4 andy,;= y,;=1. More- nius method does not exist in the proposed method. The frequency

Table 4 The prediction of the fundamental frequency A, of pretwisted cantilever beams [«=0.1, %,=0.001, r=1, B,
=(1-0.1§)cos? ®£+1000(1-0.1£)3sin? @£, B,,=1000(1-0.1£)3cos? £+ (1-0.1€)sin? d&, B,,=(5000(1-0.1£)3-0.5(1-0.1£))
sin2 ®&]

X b Aa Oy b Ap Ay
0 deg 3.62623 90 deg 0.00100076 3.62485 3.62485
0.1 deg 20 deg 3.62607 70 deg 0.00100058 3.62501 3.62501
40 deg 3.62566 50 deg 0.00100013 3.62543 3.62543
60 deg 3.62520 30 deg 0.00099942 3.62589 3.62589
0 deg 3.61501 90 deg 0.00100077 3.61363 3.61415
5 deg 20 deg 3.61493 70 deg 0.00100059 3.61387 3.61426
40 deg 3.61468 50 deg 0.00100013 3.61444 3.61453
60 deg 3.61439 30 deg 0.00099962 3.61509 3.61483
0 deg 3.53790 90 deg 0.00100080 3.53648 3.54079
15 deg 20 deg 3.53829 70 deg 0.00100061 3.53721 3.54051
40 deg 3.53920 50 deg 0.00100014 3.53895 3.53970
60 deg 3.54019 30 deg 0.00099960 3.54090 3.53870
0 deg 3.44536 90 deg 0.00100084 3.44391 3.45405
25 deg 20 deg 3.44647 70 deg 0.00100064 3.44536 3.45312
40 deg 3.44914 50 deg 0.00100015 3.44889 3.45065
60 deg 3.45212 30 deg 0.00099958 3.45285 3.44778

Ay determined by using Ed48) -
Ay, : substitutingA, into Eq.(47), #y is obtained. Further, determin', by using the proposed method for the general system.
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Fig. 2 The influence of the root spring constants on the insta- Fig. 4 The influence of the total pretwist angle ® on the first
bility of a pretwisted tapered beam [Byy=(1—0.1§)cos2 w§4  four natural frequencies of cantilever doubly tapered beams
+100(1-0.1£)8 sin? wg4, B,,=100(1-0.1&)% cos? wg4 [B,,=(1-0.1&)* cos? &b+1,(0)/1y(0)(1-0.1£€)* sin? &b, B,
+(1-0.1§)sin? #g4, B,,=[50(1-0.1£)%-0.5(1-0.1&)]sin wg2, =177(0)/1y(0)(1-0.1£)* cos? &b+(1-0.1£)* sin? £@, By,
a=2, =30 deg, r=0.1] =1,7(0)/(21,,(0))(1-0.1&)* sin? &b, »=0.001, #=0, r=1; :
a=4; — — — a=1]

relations among different systems are revealed. The mechanisms
of instability is discovered. The effects of several parameters ancritical value, the instability will happen to the Rayleigh and
the instability of rotating beams is investigated. It is shown thafTimoshenko unpretwisted beams with infinite translational spring

. . root constantr >0 and 6>0.
1 due to the coupling effect of the rotational speed and the4 if the translational root spring constant is smaller than a criti-

rotatory Ineria, when the rotating speadncreases, the effect of cal value, the instability will happen to Bernoulli-Euler, Rayleigh,

the inertia constany on the natural frequencies increases. d Timoshenko unpretwisted and pretwisted beams with infinite
2 the effect of the rotatory inertia on the natural frequencies i~ inal root spring constant

higher modes is relatively greater than that on the natural frequen-5 the instability will not happen to a pretwisted Bernoulli-Euler

cies of lower modes. eam Withr >0, 1= y4;,=1, y1,>0, andys;>0. The instability

3 the instability does not happen to a unpretwisted Bernoulli-: K . . )
Euler beam with infinite translational root spring constant and bg;::]asppen to pretwisted Rayleigh and Timoshenko pretwisted

>0. However, if the rotational root spring constant is smaller than
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On the Internal Resonance of a
Spinning Disk Under Space-Fixed
Pulsating Edge Loads

Jen-San Chen

Professor, Internal resonance between a pair of forward and backward modes of a spinning disk

Department of Mechanical Engineering, under space-fixed pulsating edge loads is investigated by means of multiple scale method.
National Taiwan University, It is found that internal resonance can occur only at certain rotation speeds at which the
Taipei, Taiwan 10617 natural frequency of the forward mode is close to three times the natural frequency of the

backward mode and the excitation frequency is close to twice the frequency of the back-
ward mode. For a light damping case the trivial solution can lose stability via both
pitchfork as well as Hopf bifurcations when frequency detuning of the edge load is varied.
On the other hand, nontrivial solutions experience both saddle-node and Hopf bifurca-
tions. When the damping is increased, the Hopf bifurcations along the trivial solution path
disappear. Furthermore, there exists a certain value of damping beyond which no
nontrivial solution is possible. Single-mode resonance is also briefly discussed for
comparison. [DOI: 10.1115/1.1408616

Introduction response. Both static and dynamic bifurcation phenomena are dis-

The vibration analysis of a spinning disk under space-fixeﬁlusjzg' i:]'hdee;fiflects of damping on the bifurcation points are also

edge loads attracts attention because of its possible application in

such fields as circular saw cutting and grind wheel operation.

Carlin and his co-workers’ investigatidd] appears to be the first

paper attempting to calculate the natural frequencies of a spinniaguations of Motion

disk under a concentrated radial edge load. Radcliffe and Mte \ye consider an elastic circular disk spinning with constant

extended the work of1] by considering a general concentrate@peedg_ The disk is “partially” clamped[6] at the inner radius

edge load with both radial and tangential components. ¢8&lh =3 and is subjected to a periodic radial load at the outer radius

reformulated the problem with emphasis on the effects of relatiye=b. In circular saw and grinding wheel operations the radial

motion between the disk and the edge load on the stability amghd is applied on a small sector of the outer edge. We assume that

natural frequencies of the loaded disk. Recently Ch@ghex- this space-fixed edge load can be expanded in a Fourier series

tended these analyses by considering the parametric resonancgbgfytzfzo P, coské. P, has the dimension of stress, apds the

a spinning disk under space-fixed pulsating edge loads. excitation frequency of the in-plane edge load. The direction of
The plate model employed if5] ignored the effect of mem- the edge load remains unchanged when the disk vibrates laterally.

brane stretching. As a consequence the equation of motion is lifhe equations of motion of the spinning disk in terms of trans-

ear in terms of the transverse deflection and the stiffness tewerse displacement and stress functiok can be written a$7]

involves a periodic coefficient which is due to the pulsating edge

load. This linearized model imposes two limits on the applicabiph(W y+2Qw 4+ Q2w 4) +c;w (+ D V4w

ity of the parametric resonance theory presentd&jnFirst of all,

while the linearized model can predict the onset of parametric —n W (F 2 17260 40 +(r W, +172W ) b

resonance, it cannot predict the amplitude of steady-state vibration ' ' ' ' ' ’

after parametric resonance occurs. Secondly, it cannot account for r
the complicated internal resonance phenomenon which is due to —2(r‘lw,é,)yr(r‘lqs,,,),r—szr(§V2w+wvr ] 1)
interaction between modes coupled by the nonlinear effect.
In this paper we extend our previous wdi to consider the 4, 1 s
nonlinear parametric resonance of a spinning disk under space- V3= —ElW(r "W, 175w g9)
fixed pulsating edge loads. Membrane stretching effect is taken 21 3w W =T R (W )21 (W )2
into account by employing von Karman’s plate model. We focus 5
our attention on the internal resonance between a pair of forward +2(1-v)pQ (2

and backward traveling waves with the same number of no

dal . .
diameters and nodal circles. Galerkin’s procedure is used to d@,_g?)are s'|[ohace-f|xed dpola_{ cc:ﬁ_r dllnates.J he pgramgtﬁisE,; 3
cretize the equations of motion. The multiple scale method is th are [he mass density, thickness, roungs modauius, oisson

used to study the steady-state behavior and the stability of t 10, ar_1d flexural rigidity of the d'.s‘k’ respectivedy. represents a
space-fixed homogeneous damping due to the surrounding air. In

_ writing Eg. (2) the in-plane inertia is neglected. These two equa-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tions are based on the famous von_ Karman's plate_ model, which

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  @ccounts for the membrane stretching due to bending.

CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 15, It is noted that the total deflection of the disk cannot be deemed

2000; final revision, May 31, 2001. Associate Editor: R. C. Benson. Discussion g5 the sum of the deflection components due to each Fourier com-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; : ;

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, al ent In the series becal.'lse the edge load .aﬁeCtS ,the Stlﬁness

will be accepted until four months after final publication of the paper itself in th@perator 'nStea_d of the forcing t_erm- HOV_Veverv n Chen S previous

ASME JOURNAL OF APPLIED MECHANICS. work [4,5] on linear response in a similar loading situation he
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observed through numerical simulation that the effects of each 30
Fourier component on the stability properties of the spinning disk c
are additive. In other words, if a Fourier component causes un- &
stable vibration, then so does the general loading containing this 2 20
particular Fourier component. As a consequence, it is possible to §
predict the behavior of the loaded disk by considering the effect of g
the general edge load as the combined effects of its individual f
components. Along this line of thought we focus on the response g 10
of a spinning disk under a Fourier component ¢t#3 coské in £
the following discussion. <
The partially clamped boundary conditions for transverse de- 0 ) ) [ ~ -
flectionw atr=a are 0 2 4 6 3 10 12
w=0 ©) Rotation speed Q
w,=0. 4) Fig. 1 Natural frequency loci of a freely spinning disk
The boundary conditions at=b are
_2 B hP, L, is the membrane operator associated with the stress field due to
(V2W) 1+ 2 (1= 0) (W, =T W )+ D cosytcoskow,=0 (5) the edge load, antl is associated with the axisymmetrical stress
field due to the centrifugal force,
W+ ot (w17 tw ) =0. (6) T J g J 0 1 J
The in-plane boundary conditions it b are L= =1l ar | Tongr Toragg| T gl Tragy T Tagy
os=0, ™ 49
=P, cosyt coskd (8) L= 1 i + 7 (1 i 14
o, =P cosy : ==l rougr |+ 25| 7 o1gg (14)
We also require that
where
¢p<o at r=0. 9 3+v ,
It is noted that while Eqg(1) and(2) are nonlinear in terms of =g Q5 (2-r9 (15)
w, they are linear inp. Therefore we can divide the stress function
in Eq. (2) into three parts: 1
¢inEq. ()| P 019=5 O (3+ )~ (1+30)r2]. (16)

b=d1+ ot ds. (10)

When the nonlinear terms of are neglected in Eqg11) and

The first part¢$, accounts for the stretching effect due to th
centrifugal force. The second papt accounts for the edge load
effect. The corresponding stress fieldg , oy, ando, 4 can be
found in a standard elasticity monograf8l. The third partes
involves nonlinear terms ofv. After substituting Eq.(10) in
Egs. (1) and (2) and introducing the following dimensionless

guantities,
t D p
* _ * — 2 p—
t b“/ph' Q*=0b \/D,
* 2 ﬂ * _— * — \/E
v*=vb o r b w* =w ho
5 ¢h . b®
=¢p—, CF=CcF——m————,
D' " "og1-12)phD
=12(1—v? h _a
e=12 V)b, 7=
. hp? . b?
7= % PiTia1=,2p e

®12), the equations reduce to the one considerel]n

In the special case when=0, the solution¢s in Eq. (12) is
identically zero, and as a consequence @4) is reduced to

(17

Equation(17) is the equation of motion of a freely spinning disk.
The natural frequency of a mode withnodal diameters anth
nodal circles is denoted hy,,,. The corresponding eigenfunction
is complex and assumes the form

Wmn(raa):Rmn(r)eing- (18)

It is also noted that the eigenfunctions,, are orthonormal.

Figure 1 shows the natural frequency loci of a spinning disk as
the rotation speed varies. The clamping ratids 0.5, and the
Poisson ratiov is 0.27. Only the modes with less than four nodal
diameters are shown here. The subscripts andr of the mode
label (m, n) represents forward, backward, and reflected modes,
respectively5].

W+ 2QW y+ Q%W g+ VAw+Lw=0.

Discretization

The linear analysis if5] predicts that when the spinning disk is
subject to a space-fixed distributed edge &8¢ cosyt cos 6,

we can rewrite the equations of motion in the dimensionless forgingle-mode parametric resonance can occur when the excitation

after dropping the asterisks for simplicity,
W+ 2QW 15+ Q2W g+ VAW+ LW+ 26CW + £ Py cosytLw

— -1 -2 -1 -2
_W,rr(r QSBJ"'r ¢3,89)+(r W,r+r W,ﬁﬁ)¢3,rr

_Z(rilw,e),r(rfld’a,e),r (11)
V4¢73= - S[W,rr(r_lw,r +r _ZW,MI)
+2r 73w W o= 1AW )2 =T R (W ) ). (12)

Journal of Applied Mechanics

frequencyy is twice the natural frequency of aim, n) mode.
Combination resonance involving two modes n) and(p, g) can

also occur when the numbers of nodal diameteesnd q satisfy
certain relations. In this paper we focus on the internal resonance
between a pair of forward and backwdrd, n) modes excited by

the in-plane edge load. We assume that solugn, 6,t) of Eqgs.

(12) and (12) can be approximated in terms of eigenfunctions
W(r,0) as

W(rxavt):Cmn(t)Wmn"—Emn(t)Wmn- (19)
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Both ¢, (t) and w,(r,6) in Eqg. (19) are complex functions,
while the displacement(r, 6,t) is a real functionw,,, represents
the complex conjugate of,,. In order to solvep; in Eq. (12)
we introduce a set of eigenfunctiows,,, satisfying the following
differential equation:

V4 mn— Bmn®mn=0. (20)

¢mn Satisfy the same boundary conditions ¢s does. After ex-
pressing¢s in terms of eigenfunction serieg,,, and following
Galerkin’s procedure, we can discretize E@sl) and (12) into

Cnnt 2inQCmnt KmCmnT 26C:Cmnt € 4 Cpmpy COS YL

+ea|Cpn?Cmn=0 (21)
where

Kmn= Omn®mn (22)

1 n20'0

(2n)
M:Wf r("r(2n)(Rmn,r) (ffnUrB(Zn),r)(Rmn)z dr.
7

(23)

wmn and wy are the natural frequencies of the backward and the

forward modes, respectively. It is noted that,, is equal to

wmnt2n). Constantx can be obtained via numerical integration

involving eigenfunctionsv,,, and ¢ |Cmil represents the ab-
solute value of complex numbey,, .

Multiple Scale Method
We apply the method of multiple scé]@] to analyze the solu-

2i @mnD 101 +i20mCid;+ ady(|d,|2+2]d,]?)

_ %(Eleingl-i-Ezei(gZ_gl)Tl):O (28)
2i @D 10, + i 20mnCid,— ady(|d,|*+2[d4[?)
+ %Ele“”“l”l:o (29)

where®,,= 1/2(wmnn+ omn) . We expressl; andd, in the forms

1 .
dy(Ty)= 5 ay(Tye T (30)

1 )
dy(Ty)= > ay(Ty)e'Pa(T), (31)

After substituting Eqs(30) and (31) into Egs.(28) and (29 we
can conclude that the nontrivial steady-state solutions,;of3,,
a,, and B, must satisfy the following equations:

Adpys1a,— aay(ad+2a3) +2u(a, cosy, +a, cosy,) =0
(32)
ACiwmpa— p(ag Sing+a, sing,)=0 (33)

A0mn(25,—3s1)a,+ aay(as+2a%) — 2ua; cosy,=0

tion of Eq.(21). The method of multiple scale assumes an expan-

sion of the solution in the form
Can(D)=cO(t, Ty) +ecii(t,T1) +0(e?) (24)

where T;=et. Substituting(24) into (21) and equating coeffi-
cients of like powers of yields

g% DIcO+2inQD O+ KmnnCih=0 (25)
gt D3c+2inQDci+ KmnnCli)
=—2D;D¢c!—2inQD;c!—2¢;Doctd
— afeqlPein— e cosyt (26)

where Dy=4d/dt, and D;=d/dT,. The general solution of Eq.
(25) can be written in the form

Chon=d1(T1)e'“miTo+dy(Ty)e ™! “ma'o, 27)
Substituting(27) into the right-hand side of26) we observe that

(34)
ACiw o+ pnag Sing,=0 (35)
where
1=s1T1—2p, (36)
Yo=(s2=51)T1— B1— B>. (37)

It is noted that single-mode resonance is not possible in this case.
A straightforward solution procedure to solve E(2) to (35) for
nontrivial solutionsa, , a,, ¥, andy, is described briefly in the
Appendix. The steady-state vibration of the spinning disk is then

t
w(r,0,t)=Ryx(r) alcos(% %Jrn@
3yt
+azcos(7y—%+z//2—n0 +0(s), (38)

which represents the superposition of two waves traveling in op-
posite directions. It is noted that the first term wathin Eq. (38)

is excited directly by the edge load, while the second term ®&jth

is excited internally in a super-harmonic manner.

there exist secular terms in three different cases. In the first case
whenw,;,is close to 3,,, andy is close to 2v,, internal reso- Stability Analysis

nance involving both modes will occur. In the second case when

omn IS close to ,,, and y is close to 2v,,,, only single-mode
resonance will be induced. In the third case whep, is away
from 3w, and vy is close to 2v,, or 2w, again only single-

mode resonance is possible. The second and the third cases are the
same in essence. No combination resonance of the sum or differ-
ence type is possible when only this pair of modes are considered

[5]. In the following we focus on the internal resonance case.

Internal Resonance:w,,is close to 3w,,, and vy is close
to 2w

In this case we assume that
Y=20mnntesy

©Omn=30mnt €S2

The stability of the steady-state solutions can be analyzed by
expressingd,(T;) andd,(T,) as

dy(Ty)=d¥+dy(Ty) (39)

dy(T1) =d +dy(Ty). (40)

d{® andd® are the steady-state solutions. After substituting Eqs.
(39 and(40) into Egs.(28) and(29) and linearizing with respect

to the variationgd;(T;) andd,(T,) we can study the stability of

the steady-state solutions. For instance, in order to study the sta-
bility of the trivial solutions we substitute

dy(Ty)=[a;(Ty)+iB1(Ty)]e12T (41)

da(Ty) =[ay(Ty)+iBa(Ty) el ¥1/2His2Ty (42)

wheres; ands, are two independent detuning parameters. Thato Egs.(28) and (29) to obtain the Jacobian matrpd] of the

secular terms of E¢26) can be eliminated if

856 / Vol. 68, NOVEMBER 2001
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4Ctwmp K= 251®mn 0 I

HF251®mn 4Ctwmp M 0
[J]= _ . - _ - (43)
0 M 4Ctomn Omn(6s1—4s5)
M 0 — Omn(6s1—4s7) 4ciomn

By calculating the eigenvalues of the Jacobian matrix, we cdlne unstable trivial solution from point A undergoes a subcritical
determine the stability of the trivial solutions. The stability of thepitchfork bifurcation at point B{; = —0.64), creating an unstable

nontrivial solutions can be analyzed in a similar manner. nontrivial branch BH and a stable trivial branch BC. This stable
trivial solution then loses stability via a supercritical Hopf bifur-
Steady-State Solutions cation ats;= —0.33 (point C), creating a quasi-periodic solution

) . Cgz Which cannot be shown in Fig. 2. The unstable branch CD
Figure 2 shows the amplitudes and phases of the,Steady'Sﬁ.ﬁ%ergoes a supercritical Hopf bifurcation at point & 0.33)
solutions as functions of detuning parameserfor the internal  4nq creates a stable trivial branch DE. The branch DE then under-
resonance between a pair @ 3 modes af)=3.3. The param- goes 3 supercritical bifurcation at point E creating a stable non-
eters used in the calculation ase=0.01, w3=9.9, w03=29.7, {rivial branch EG and unstable trivial branch EF. The stable
©#=100,¢¢=0.5, anda=0.4. The excitation frequency=2wo3 pranch EG then loses stability via a supercritical Hopf bifurcation
+esy. The solid and dashed curves represent stable and unstagl%oim G creating a stable quasi-periodic solutiaich again
solutions, respectively. The stable trivial solution undergoes a tnnot be shown in Fig.)2nd an unstable periodic solution. The
percritical pitchfork bifurcation at,=—3.11 (point A). From  trvial branch EF undergoes a subcritical pitchfork bifurcation at

point A the nontrivial solution branch is stable and undergoes@jint F creating an unstable nontrivial branch and a stable trivial
saddle-node bifurcation at point ki{=0.90). On the other hand, yyanch.

The bifurcation points along the trivial solution path can be
verified by observing the eigenvalue®f the Jacobian matrixJ]

4 in Eq. (43) in Fig. 3. At points A, B, E, and F there exists a zero
3 Fomeueeens eigenvalue, which implies a pitchfork bifurcation. On the other
S B‘~.. hand at points C and D there exist a pair of purely imaginary
A= eigenvalues and the real part loci of the eigenvalues cross the zero
i 1 '__/E*.‘: ________________ line “transversely,” which implies a Hopf bifurcatiofiL0].
i ofA To demonstrate the existence of quasiperiodic solutions pre-
F r dicted by the multiple scale analysis we use Runge-Kutta method
1 to integrate Eq(21) ats,;= —0.32(a point slightly to the right of
0 point C in Fig. 2 with initial conditions cyz=0.1 andy;=0.
ATH Figure 4a) shows the response history of the real partg@fafter
ls H ............. at a long period of time. Figure (B) shows its Poincare map re-
S 10 ave > EG corded fromt= 10,000 to 12,000 with the sampling rate equal to
5 / D_/G e 3 T Femmn the excitation frequency. The sampling points fill up a small strip
LA B e F |
4-3-2-101 23 435 432101 23 45
Ql gl
Fig. 2 Amplitudes and phases of the steady-state response. —_
£=0.01, 0=3.3, w;3=9.9, w;3=29.7, y=2wzt&s,, p=100, 2
=0.4, and ¢;=0.5. <
S
~
0.4
10 12100 12110 12120 12130 12140 12150
t
(@
S
—
S
= o
]
(=
-5
-0.1 0.0 0.1
Real(cy;)
2 — (b)
4 321012 3 45
S
! Fig. 4 (a) Quasi-periodic response and (b) the corresponding
Fig. 3 Eigenvalues of the Jacobian matrix along the trivial so- Poincare map for s;=—0.32 with initial conditions  ¢¢3=0.1 and
lution path of Fig. 2 Coz=0
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Fig. 7 Pitchfork and Hopf bifurcation points along the ftrivial
solution path as functions of damping C

Real(¢,;)

-10 ‘ ' ‘
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Re‘zl(;oa) Aop=10240% ®mn@min
b
AlH:64&’%n[8mf2wmnwmﬁa’§m+M(4"‘\)§m+ Omn@mn)]
Fig. 5 (a) Periodic response and (b) the corresponding Poin- 4 4 2 2.2 2 2
care map for s,=—0.32 with initial conditions  cz=20 and Co; Aon = 4096 0 n@ in®mn+ B4CF L O (win T @)
=0
_M4(4w2mn_ Omn@nin) -
;(5) P The roots of Eq.(44) correspond to points C and D in Fig. 2.
%0 c )3 j— Similarly, the detuning parameter;p for pitchfork bifurcation
515 =2 B._E must satisfy
10 1 COH—G . )
(5) ol A Azps1pTArpsiptAgp=0 (45)
5 -1 where
30 1 Azp= 144&)?nn
2 oA Arp=402 [16c4(8w? + w2-) — 15u
15 5‘?"1 @H 1P~ wmn[ f( Wy ™ Oy ~ ]
< H T E
1(5) /// / G» ________ 2 ‘\\F(:}:::: Aop= 25&:?(»%”(»&?" 16Cf2/"“2wmﬁ2wmn_ Omn) + #4-
i 3
_(5) A B E F | 4 The roots of Eq(45) correspond to points A, B, E, and F in Fig.
4-32-1012345 432-1012345 2. In Fig. 7 we plot the absolute values of the roots of E¢d)
1 51 and (45) as functions of damping; . It is observed that Hopf

bifurcation ceases to exist as exceeds 0.63, while pitchfork
bifurcation ceases to exist as exceeds 1.67. In other words, no
nontrivial solution is possible whegty is greater than 1.67. These
two special dampings, denoted by, andcsp, respectively, are
proportional tow, and can be obtained by solving

Fig. 6 Amplitudes and phases of the steady-state response.
£=0.01, Q=3.3, ®(3=9.9, ®(3=29.7, y=2wy3+¢£s,, p=100, @
=0.4, and ¢c~=1.0.

around a closed curve, which implies the quasi-periodic feature of Aon=0 (46)
the response. If the initial condition @f is changed from 0.1 to A2, —4A,pA0p=0, (47)
20, the response then settles to the stable branch AH in Fig. 2, as i )
shown in Fig. 5. The Poincare map in Figbrecords the sam- 'éspectively. Both Eqsi46) and (47) are quadratic equations of
. . 2
pling points fromt=4000 to 6000. Ct-
To observe the effects of damping we use the same parameters
as those in Fig. 2 but change the dampigrom 0.5 to 1. The Single Mode Resonancew, is close to 3»,,, and y is
amplitudes and phases of the steady-state solutions are showg|gkse to 2w
Fig. 6. We observe that the two Hopf bifurcation points C and D )
approach each other until they coalesce and disappear. FurthefD this case we assume that
more the Hopf bifurcation point G on the nontrivial solution

. 2 Y=20mnt&s;. (48)
branch moves to the right resulting in a longer stable branch EG. o )
The secular terms of E@26) can be eliminated if

Bifurcation Points 2i0mpD 101+ 20m,Cedy+ ady(|dq]2+2]dy|2)=0  (49)

The observations on the eigenvalue loci in Fig. 3 allow us tg. . . 2 o P it
predict the bifurcation points on the trivial solution path analyti-g'“’mnDld2+'2“’f“7‘cfd27O‘dZ(|dl| +2da|%) + Ed2e "1=0.
cally. For the Hopf bifurcation to occur a pair of the eigenvalues (50)
of the Jacobian matrigd3) must be purely imaginary. By Routh-

Hurwitz criterion we conclude that the detuning parametgy Following a similar procedure as in the internal resonance case we

. : can conclude that the steady-state solutiorapis zero and the
must satisfy the equation nontrivial steady-state solution @b and 3, satisfy the following
Aoustnt Asiy T Aon=0 (44) conditions:
where 4Ciwmn— SN, =0 (51)
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50 tation frequency is close to twice the frequency of the forward
mode, on the other hand, only single-mode parametric resonance
is possible.

(b) For light damping case the trivial solution can lose stability
via both pitchfork as well as Hopf bifurcations when frequency
detuning parameter is varied. On the other hand, nontrivial solu-
tions experience both saddle-node and Hopf bifurcations.

(c) When the damping is increased the Hopf bifurcations along
the trivial solution path disappear. There also exists a certain
damping value beyond which no nontrivial solution is possible.

Appendix
Fig. 8 Amplitude of the single-mode resonance.  £=0.01, Q By eliminating ¢, from Eqgs.(34) and (35) we can derive an
=33, ©03=9.9, 03=29.7, y=2wo3+¢s;, p=100, a=0.4, and equation involving onlyg=a? and f=a3 in the form
Cf=0.5.
P2(f)g%+p1(f)g+po(f)=0. (A1)
With use of Eqs(34) and(35), Egs.(32) and(33) can be reduced
— a3+ 2u cosyp+ 4 mns,=0 (52) to
where da(f)g*+as(f)g+ax(f)g+au(f)g+ae(f)=0 (A2)
Yr=5,T1+2p,. (53) p; andq; are functions of only. EquationgAl) and(A2) can then
. . . . . be reduced to the following equation in termsfof
Therefore, only single-mode resonance is possible in this case.
After eliminating ¢, from Egs. (51) and (52), we derive the (MyPo— MoP2) 2+ (MyP1 — My P,) (Mep;—MyP) =0  (A3)
square of the steady-state amplituaeas
where
2
a§=; [2510mnt (12— 16c2w2 V2] (54) My = Po(P203—P1d4)

— _ _R2
Nontrivial steady-state vibration begins to exist when My =Po( P20z~ Poda) ~ P20

u?— 162w Mo = PoP201~ P1P200-

i (55)  Atfter solving a, from Eq. (A3), we can obtaira; from (Al).

=
51 462,
Equation(55) can also be predicted by the linear analysi$5h References
Figure 8 shows the amplitude of the steady-state vibration as a
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By using Pontryagin’s maximum principle we determine the shape of the lightest rotating
rod, stable against buckling. It is shown that the cross-sectional area function is deter-
mined from the solution of a nonlinear boundary value problem. Three variational prin-

ciples for this boundary value problem are formulated and a first integral is constructed.
The optimal shape of a rod is determined by numerical integration.

[DOI: 10.1115/1.1409938

1 Introduction given. For a historical account on the problem of a compressed

Consider an elastic rod BC of length fixed at end B and free optimal column see Cok15] and the discussion following that

; aper.
at the other end. Suppose that the rod has a circular cross sectPorlﬂ solving the problem of determining the shape of an optimal
that its axis is straight, and that it rotates with the constant angul%"tating rod we shall use the procedure based on Pontryagin's
velocity w about its axis. Lek-B-y be the rectangular Cartesianmaximum principle with the special identification of the “state”
coordinate system with the axisoriented along the rod axis in gnd “costate” variables as in Atanackovic and Sirfi®)]. For the
the undeformed state. Ldl be a plane defined by the systemyelevant equations describing the optimal rotating rod, that we
X-B-y that rotates with the angular velocidyabout thex-axis. At believe are new, we formulate three variational principles. On the
a certain velocity the rod loses stability so that it could be bebfsis of these variational principles we shall find a first integral
under the action of centrifugal forces. If the rod is bent it wilcorresponding to Euler-Lagrange equations. This first integral is
assume a relativewith respect to the rotating plarié), equilib- used to check the accuracy of numerical integration.
rium configuration(see Fig. 1L Note, however, that during the
motionbetween two relative equilibrium configuratiof@ne cor- 2 Model
responding to the initial state in which the rod axis is straight and _ . o .
one in which the rod axis is berthe axis of the rod is, in general, Th_e equilibrium, geometrical, and constitutive equations for the
nota plane curve. The problem of determining the critical rotatiofPtating rod are

speed and the post-critical behavior of the rod described has been  H'=0, V'=-p,0?, M’'=Vcosf—Hsing, (1a)
the subject of many investigations. The first result for critical ro- )

tation speed, for prismatic rods with constant cross section, was X =cosf, y'=sind, (1b)
presented by Stodo[d]. He credits Dunkerley for the first critical M

speed calculation performed in 1895. Later the problem of deter- 0'= (1c)

mining critical rotation speed was treated by many authors. We El

mention the work of Odeh and Tadjbakhs}j that became clas- whereH andV are components of the contact force in an arbitrary
sic, Bazely and Zwahlef3], Parter[4], Atanackovic[5,6], and cross sectionM is the bending momeng is the angle between
Clement and Descloux7]. In all of these works the classical the axis of rotation and tangent to the rod axis, anandy are
Bernoulli-Euler theory of rods was used. For a review of generagoordinates of an arbitrary point with respect to the rotating Car-

ized rod theories used in stability analysis of rotating rods, séesian framex-B-y. Also in (1) we usep, to denote line density
Antman[8] and Atanackovid9]. of the rod(mass per unit length of the rod aki& is modulus of

Our intention in this work is to formulate an optimization prob€lasticity,! is the second moment of the cross-sectional area of the

lem for a rotating rod by using the procedure presented [d, and ¢)’=d(-)/dS. Note thatp,=pA wherep is the density
Atanackovic and Simid10]. Suppose that the angular velocityof the rod(mass per unit volumeWe assume that the cross sec-
with which the rod rotates= w,= const. and length of the rad tion of the rod is circular, so that
are given. LetS be the arc length of the rod axis, so that I =aA2 )
e[0,L]. We definethe optimal rotating rodas the rod so shaped
that it will lose stability for w>wy while any other rod of the
same lengthin our case equal th) and equal or smaller volume
will lose stability for o< wy.

Thus, the optimal rotating rod will be the lightest rod of length
L that is stable against buckling foOw < w,. Similar problems
for a centrally compressed column were treated by many authors.
We mention the works of Clauséfl], Blasius[12], Ratzersdor-
fer [13], and Keller[14] where the most complete analysis is

whereA is the cross-sectional area aad- (1/44). With this no-
tation, the volume of the rod is

ST
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Department of Mechanical Engineering, University of Houston, Houston, TX 77204-
4792, and will be accepted until four months after final publication of the paper itself
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W= LLA(S)dS (3)
By using the dimensionless variables and parameters
S S R o
L L L L
M Y , pwil?
M= Eal® ""Eal? M Ea (4b)
and a new dependent variable
v
u=-x (6)
we obtain from(1a)—(1c)
U=\ay, m=-\ucosf, y=sinh, 6O=-— Ez (6)

a

=0 (as will be in our analysjsthe conditionm(1)=0 can be
satisfied with6(1)+#0. For fixed\ the existence of a nontrivial
solution of (10c), (10d) is a necessary condition for the loss of
stability! The dimensionless volume of the rod is given as

1
w=f a(t)dt. (11)
0
We state now the following optimization problem:

Given) determinea(t)>0 forte (0,1) so thai is the smallest
eigenvalue of(10c), (10d) and that at the same time given by
(12) is minimal.

We call the rod with sucla(t) the optimal rod Thus, the opti-
mal rod is so shaped that any other rod with smaller volume
will buckle at a rotation speed that is smaller than

We coment on the boundary value probl€hda)—(10f). In it A
must be an isolated eigenvalue in order that nonlinear equilibrium
equations have bifurcation point atand we assume this to be
true. However, the boundary condition (0Q is not standard and
is of the type analyzed by Keller and Niordsgh7]. Cox and

The boundary conditions corresponding to the rod shown in Fig.\dcCarty [18] pointed out that the assumption about isolated ei-

are

u(l)=0, m(1)=0, y(0)=0, €(0)=0. )

genvalue may be violated if the cross-sectional a@ vanishes
too severe whei— 1. Thus, in principle, our assumption may be
checked by the method similar to the one presentdd & This

The systent6), (7) possesses a trivial solution, in which the axigather delicate analysis is outside the scope of the paper.
of the rod remains straight for any value of the dimensionless

rotation speed, in the form

U():O, m0=0, y0=0, 0020 (8)

To examine stability of the equilibrium configurati¢d) we use
the Euler method. Thus, we assume that

u=upg+Au, m=mg+Am,..., 60=064+A0, 9)

where Au, ...A6§, denote perturbations of the corresponding

variables. Then, by substituting) into (6) and linearizing the
resulting expressions, we obtdiomitting A in front of perturbed

variable$
5.:)\0, (fa®) =\u, V=6, (10a)

subject to
u(1)=0, 0(0)=0, 6(0)=0, &(1)a%(1)=0, y(0)=0.
(100)

For the bifurcation it is enough to consider

5 =\e. (ha?) =\u, (10c)

subject to

u(1)=0, U(0)=0, 6#(0)=0, lim6(t)a(t)=0.

t—1 (lw)

By introducing new variables=w;, , U=w,, §=w;, #=w, and
the vectorw=[w,,w,,w3,w,], the system(10c), (10d) can be
written in compact form as

F()\)W=% A%W +ABw=0, (1)
whereA andB are given as
0 1a 0 O 0 0 1 O
0O 0 O O 0O 0 0 O
A<lo o o o] Blo o o o @O
0 0 0 a 10 0 O

Note that the boundary condition (d)) that corresponds to
m(1)=0 is equivalent to9(1)=0 if a(1)#0. However, ifa(1)

Journal of Applied Mechanics

3 The Optimization Problem and Its Solution

Let x4, ...X4 be a set of dependent variables defined by
u=x,, (UWa)=x,, 60=xz, (a20)=x,. (12)
Then, the systenil0a), (10b) becomes
Xi=aXy, Xo=M\Xs, )'<3=¥, X4=A\Xq, (13)
subject to
X,(1)=0, x,(0)=0, x3(0)=0, X4(1)=0. (13)

The problem of determining the shapét) of the optimal rod
may be stated, in terms of the optimal control theory, as determine
the “control” function a(t)>0, t € (0,1) that minimizes the func-

tional
1
I=f a(t)dt,
0

when the system is described K3). To solve the optimization
problem we use Pontryagin’s maximum princigkee Sage and
White [19] and[20]). For other applications of Pontryagin’s prin-
ciple for design problems see Piers¢@l] and Carmichael
[22,23.

For system(13) the Hamiltonian functiori{ is

(14)

X4
H=a+piaxs+poAxs+ p3¥ +PaAXq, (15)

where the costate variablgs, . . . p, satisfy

. 0H \ . 0H

P1= Xy Pa,  P2= Xy pia,

. (97‘[_ N . (QH_ Ps3 164

Ps== 7= P2y Pa=— =", (169)
subject to

1In fact a necessary condition for bifurcation at the poing (ny,yo,\) for the
nonlinear system of Eq<6), (7) is that\ belongs to the spectrum of the linear
differential operator F(\). Thus, if A is an eigenvalue ofF(\) the point
(ug,mg,Yo,\) is a latent bifurcation pointsee[8]). The sufficient condition for
bifurcation at an eigenvalue &f(\) are given in Chow and Halgl6].
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0)=0, 1)=0, 1)=0, 0)=0. (1& 1
Pl( -) pz( ) . P3(1) P4(0) (160) ay==[1+22y2]. @7)
The optimality condition mirH(t,x4,X5,p1,P2,a) leads to 2
) Finally by differentiating (18), and by using25) we get

t

('aaz)--:(yaz)-:xu:xzaf 0(&)dé=N\2ay. (28)
0

IH X4
%Zl—i_ p1X2—2p3¥:0. 17)

By solving (17) for a we obtain
y 9(17 Therefore the optimal shagt) of the rotating rod is determined

2psx, | 1B 18 from the solution of the systerf27), (29):
1+piXa) (18)
Afurther procedure simplifies significantly if we make the follow-

ing observatior{used in a similar context ifL0]): The solution of .
the boundary value problefd3) leads to a solution of the bound- SUPIect to

ary value problen{16) if we make the following identificatiof: y(0)=0, ¥(0)=0, limy(t)a®(t)=0, lim{[y(t)a’(t)]}
. t—1 t—1
Pi)=Xa(1);  Pat)=—X4(t), P3=Xs, Ps=—Xs.
(19) =0. (2%)
By using (19) the control variablea(t) given by(18) becomes e analyze next systeii29).

(ya?)-=\?ay a'y2=%[1+xzy2], (2%)

B 2(X4)2 1/3 20
T 1+ (xp)? (20) 4 Variational Principles for the System (29)
Note that with(19) substituted in(17) we have ¢?H/da%)>0 so In this section we shall formulate three different variational
that the necessary condition for minimumfis satisfied. From principles corresponding to the syste@®). Also we shall con-
(20) and the boundary condition (3, we conclude that struct a conservation laghe first integral corresponding t¢29).
a(1)=0. (21) (@ The Variational Principle With Two Arguments. Let

. . . . be the linear function space defined as
Thus,the optimal rod is tapered so that it has zero cross-sectional * P

area and zero moment of inertia at its free eddso, when the W, ={w=(y,a):ye C*0,1);y(0)=y(0)=0;
original variablegsee(12)) are used in20) we obtain

acC?(0,1;a=0, a(1)=0}. (30)
%’ 1 205 Consider the functional
PN (222) ,
By using the boundary conditiofi0b) in (22) we get l1(y,a)= fo Fadt, (319)
a(0)62(0)= % (22v)  with the Lagrangian function

. o , Fi=a%y>—\2%ay?— 1. (3b)
We now transform the conditions of optimalit20). First we ] o
write it in the form Suppose further that we want to determine the minimurhy ain

) W;. We claim thatl, is stationary on the solution g29). To
2(x,)° 2a*#? - prove this note that the condition of stationarity, i.e., vanishing of
B T2 Claln (23)  the first variationsl,, leads to the following Euler-Lagrange

equations:

1+(xp)%=

Note that from(23) we conclude thaa(t) #0 for te (0,1). Thus, \2 1
the eigenvalue i{10e) is simple, if it exists. Next by differenti- a2V y 2 w2 N e T
ating (23) and by using12), (13) we get (ya%)=:"ay, ay 2 y 2 0, (32)

and natural boundary conditions

y(1)a*(1)=0, {[y(Ha*(t)]}-1=0. (3%)

as the optimality condition. Now we transform the syst€tfia) The systen{32) is equivalent ta(29).
as follows: Integrate (1), to obtain

. u
(a6?) :w(5>, (24)

(b) The Variational Principle With one Argument. We
u N [0(§)d§ (25) can write systen{29) as a single differential equation of fourth
al 0 ’ order if we calculate from (29a), and then substitute the result in

(29);. Thus we obtain
where we used the fact tha(0)=0 anda(0)+0 (see (1®), and

. . . . . 1 . 1+ )\2 2
(326?))). Substituting(25) into (24), integrating and usin@22b), we .)7;(1+)\2y2)2} 72)\2}/( ; y°) o, (33)
= [ oo [ “woracas 5 @) "
ag = + .
0 0 2 y(0)=0, ¥(0)=0,
Sincey = 6 (see (1@)3) the Eq.(26) that represents the condition 1 P, ([ 1 ) 2])
i i i ——[1+\ 1)]°=0, ——[1+N\ t =0.
of optimality, may be written as 4y3(1)[ y<(1)] 4y3(t)[ ya(t)] .
2There is one more possibility to connect the solution§1® and (16). This is (33b)
given by the following identification of dependent variableg=—Xx,, p,=x;,  Consider the space
pP3=—X4, P4s=X3z. However, this identification is not of interest since it does not
provide a(t)=0 in (18 and (®H/9a®)>0 with H given by (15). W,={y:ye C*0,1);y(0)=y(0)=0!, (34)
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and the functional Finally we note that witHy, p) known, the cross-sectional area
a(t) is determined from Eqg27) and (36) so that

1
I2=j Fodt, (3%3) p2 13
0 a=a(t)={—5 — } (45)
+
with Lagrangian function 2°(1+\°y9)
(1+21%y?)2 5 Numerical Results
2 'y? ’ (350) The systen(39) is integrated by using the Runge-Kutta double

Then the Euler-Lagrange equation correspondingte=0 is precision procedure. Note that the_pOiFFtl is a singular po@nt

equivalent to(33) N%te tghat t%e natural bouFr)ldar con%:itions forfor the system(39) so that the equatio(8%a); cannot be satisfied

thqe minimization-ofl on the se(34) are identicalyto(SSb) att=1. Thus we proceeded as follows: We constructed a sequence
2 ) of numerical solutionsy(,,p,). n=1,2,... withy,(0)=y,(0)

(©) The Canonical Formalism. The variational principle =0 andy(t)>0, y,(t)>0, pn(t)<0, py(t)>0 for te (0,1) and
51,=0 could be used to writ€9) in canonical form. We define a Pn(1)= —&,, p(1)=4, with the constantss,>0, §,>0. For
variable(a “momentum”) p as each solution ¥, ,p,) the values of variablep,(0) and p,(0)

b on and the cross-sectional areg=a,(e,,d,) and are determined
_ 0_':2__2(1+)\ y°) 36 (a, is determined according t®5)). Then, the optimal cross-
p= Ny & ) (36) sectional areaa(t) and corresponding initial valueg(0) and
Then, the Hamiltonian function is p_()g) ;rig'btriglsgcgjelyn’ im Pa(0). and imp,(0) wheney

3 We performed the calculations far= 10 and obtaineg(0)
Hz=py—F2=— 51 P21+ N%y?)2R, (37) =-0.195077 anh(0)=0.379104. In Fig. 2 we show the solu-
tion of a(t) calculated according t@45). The accuracy of integra-
With (37) the canonical equations tion was controlled by evaluation of the first integfd) in each

step of integration. The left-hand side (A4) was constant and

L dHy o dH; (3g) eaual t0(3/22/3)[0.195077]43=0.6356 up to 108.
YW Py From (45) we obtaina(0)=(p?(0)/2°)}*=0.10595. The di-
become mensionless volume of the optimal rod is determined by using
(11) and(45). For A=%T0 we obtain
) (1+)\2y2)2 1/3 ) s p2 1/3 .
- [2 p } » p=m2h y{Z (1+>\2y§)} ' w=f a(t)dt=0.03712. (47)
0

te(0,1). 3%
e(_ ) - (3%) We show next that with the solution 89) for single\ we can
From (29%) and (36) we obtain the boundary conditions corregetermine the solution for any. Let (y, p) be the solution of the
sponding to the systeri88a) as problem (39) and leta(t) be corresponding cross section area
_ SO0 — _ _ determined for the specified value of the dimensionless rotation
y(0)=0, y¥(0)=0, p(1)=0, p(1)=0. (3%) Let (¥,p) anda(t) be the corresponding functions determined for

Consider the spacé/; the dimensionless rotation spedéd= B8\, with the constanig
. given. By using(39) and(45) it is easy to show that the following
Wi={w=(y,p):ye C%(0,;y(0)=y(0)=0; relations hold:
peC(0,2);p(1)=0, p(1)=0} (40) 1 i ]
and the problem of determining the minimum bfy of the func- y=3Y pP=p"p; a=pa (48)
tional
L Thus, with the solution for singla we have solution for any.
L= | E.dt (41) We compare now the volume of the optimal rod and the rod
s o s¥h with constant circular cross section if both are stable up to the
_ same angular velocityw. Suppose that both rods are made of the
with same material, i.eE,p are the same. Also we assume that both
3 rods lose stability at the same angular veloeityFor the rod with
Fa=yp— 577 p23(14\2y?)23, (42) constant circular cross section we hasee[6])

It is easy to see that the conditi@gth;=0 reproduces the system
(39). However, sincd=5; does not depend explicitly onwe have
a Jacobi type of first integral fq89) in the form

3
b+ om p?3(1+\%y?)?%=const. (43)

We determine now the constant {43). By using the boundary

conditions (3®) it follows that a(t) 005

.3 3
b+ 5P 1402y 2P=C= 5p[p(0)1*° (44)

We shall use44) to check numerical integration of the system 0

(39). Namely we shall, in each step of numerical integration, cal- ‘

culate the left-hand side @#4) and compare so obtained value

with the constant on the right-hand side. Fig. 2 The optimal cross-sectional area
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05 | 1 We derived the system of differential Eq29) that deter-
’ ] _ mine the optimal cross secti@{t) and the shape of the rod in the
R | “Rod with constant first buckling modey(t). For this system we derived three differ-
ent variational principles. Then we transformed the sys@2®hin
; the canonical forn{39). Finally we derived a first integral for the
] (39) in the form (43).

1> Optimal rod 2 From Eq.(21) we concluded that the optimal rod is tapered at
: the free end. By numerical integration we determined the optimal

shape of the rod.

| 3 The optimal rod has the volume of only 4.59 percent of the
0 0.5 1 rod with constant cross section that loses stability at the same
rotation speed.

Fig. 3 Optimal rod and rod with constant cross section
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The Exact One-Dimensional
| Theory for End-Loaded Fully
LaboratoiredeMécar%uel-etagcehr:gﬁlgig AniSOtropic Beams Of Narrow

ENS Cachan/CNRS/Universite Paris 6,

94235 Cachan, France RectaHQUIar cross Se(:tion

J. G. Simmonds

Department of Civil Engineering, The exact theory of linearly elastic beams developed by Ladesed Ladez and
University of Virginia, Simmonds is illustrated using the equations of plane stress for a fully anisotropic elastic
Charlottesville, VA 22903 body of rectangular shape. Explicit formulas are given for the cross-sectional material
Fellow ASME operators that appear in the special Saint-Venant solutions of Lagesad Simmonds

and in the overall beamlike stress-strain relations between forces and a moment (the
generalized stress) and derivatives of certain one-dimensional displacements and a rota-
tion (the generalized displacement). A new definition is proposed for built-in boundary
conditions in which the generalized displacement vanishes rather than pointwise displace-
ments or geometric averagegDOI: 10.1115/1.1412238

1 Introduction three-dimensional elasticity. Our final results—one-dimensional
beamlike equations relating a generalized stressQ(M), to a
generalized displacementy,p ,w)—suggest a rational definition

of built-in boundary conditions, namely, that the generalized dis-
placement vanishes. This, in turn, implies that the corresponding
displacements of plane stress theaiy not vanish at a built-in
boundary. If, on the other hand, one insists that “built-in” means
the pointwise vanishing of these displacements, then, to derive the

Th|§ beam th.eory IS “exaqt" in the sense that qne-dlmensmn oper kinematic boundary conditions for the exact beam theory,
beamlike equations are obtained from the three-dimensional eq Ae must first solve a set of auxiliary “canonical” plane stress

tions of linear elasticityvithout any hypotheses or approximationfs)robIems following LadeezES], as we show

whatsoeverThus, the exact theory is not asymptotic and no ap- ' ' '

peal is made to small slenderness ratios. geeralized stressf

the exact theory is the same as in conventional beam theory,

namely, the net forces and moments acting over any cross secti@n. The Dimensionless Equations of Plane Stress Theory
The heariand novelty of the exact theory lies in the definition of Consider a rectangular beam of width depth 24, and length
the conjugate generalized displacementwhich comprises HI, and let &;,X,)=(x,y), O<x<I|, —1<y<1 Be a pair of
displacement-like and a rotation-like quantities, defined, not 3%ensionlessl’plénar (farfesian coc;rdinates wlﬁng along the
certain cross-sectional averages of three-dimensional diSpIaEShterline of the beam. Eurther. with denot}ng some nominal
ments, but rather as cross-sectional integrals involving the thr ng's modulus, Iet.eaB, E,O—aﬁ: E(o,7,0,), and Hu,

1ENtS, | _ grass I 6
dimensional displacements, the three-dimensional stresses, gqal(u V) denote, respectively, the physidaartesiah compo-

elastic operatora\, B, /(3)\, andé, With the aid of these definitions, nents of the strains, stresses, and displacements of plane stress
any problem for a beamlike body can be decomposed exactly itfgory. (As the notation suggests, we shall switch between Carte-
an interior part, explicitly computable from the solutions of th&ian tensor notation and conventional, extended notation, as con-
associated one-dimensional exact beam equations, and a decayfigient and without comment.
edge-effect part, as shown fji—4]. _ The field_ equations of plane stress theory comprise the equilib-
The calculations if1—4] are, at times, a bit heavy, even undeflum equations
the assumption of a certain degree of elastic symmetry. Moreover, _ _
the cross-sectional elastic operators are not computed explicitly. Tapp=0  Tap=0pas @
The present paper is designed to present a relatively simple, Byl the strain-displacement-stress relations
realistic exposition osomeof the ideas if1-4]. All our calcu-
lations are explicit and analytic. Moreover, we make no assump- €up=LU2Uy gt Ug o) =CupruOiru 2
tions on elastic symmetry. Thus, by considering a beam of narro . . L
rectangular cross section, subject to prescribed end loads an(‘f\% re a comma followed by a subscript denotes differentiation
displacements only, we may take our reference equations as th&@ respect to the variable with that subscript. Here, the dimen-
of linear plane stress theory rather than those of more complicafl@n!ess elastic coefficients possess the standard symmetries,

—— Ca,B)\/L:C)\/Laﬂ:Cﬂa)\;L . (3)

Ladevee[1,2] and Ladevee and Simmondg3,4] have devel-
oped anexact theoryof linearly elastic prismatic beams of arbi-
trary cross section. Ifil] and[2], there are no body forces or
tractions on the lateral sides of the beam, whered$ | such
loads may be present. In these papéextended Saint Venant
solutions play a key role.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF (Our ana|ysis could be extended to elastic coefficients that vary

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ; ;
CHANICS. Manuscript received by the ASME Applied Mechanics Division, FebruaryWIth depth) The lateral sides of the beam are stress free so that

12, 2001; final revision, June 2, 2001. Associate Editor: R. C. Benson. Discussion on
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arg/ . . . .

will be accepted until four months after final publication of the paper itself in th/V€ take the beam to be cantilevered, but refrain at this point from

ASME JOURNAL OF APPLIED MECHANICS. being more specific about the end conditions.

7(X,£1)=0,(X,=1)=0. 4)
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3 The Saint-Venant Solution

The easiest way to define this solution in plane stress theory is
to satisfy(1) identically by introducing the Airy stress functidn

so that

()

where e, is the two-dimensional alternator. On substituti2y
and (5) into the compatibility equation

Tap=an€ gl

(6)

Sa)\sﬁ,u,euzﬂ,)\,u,z 07

0

—(32)y
0

Next, we compute the Saint-Venant displacements. F{®m
with a= =2, and(5), we have, on integrating with respectyto

VV=0(X) + Copiif, )?V(Xny) —2Cof, (%Y, (19)

wherev(x) is a function of integration. Insertinl6é) into this
expression, using (15)o replaceM’(x) by —Q, setting

1% EU_(X) - (3/4)02211XV

. (18)

(20)

we obtain the well-known fourth-order partial differential differ-so thatVSY(x,0)=v(x), and noting thatC,,;;=C11,,, We find
ential equation forf. Writing out the first two terms explicitly that

(which is all we neefdand dividing byC;4411, we have

fyyyy=Kfxyyyt =0, Q)
where
k=4C1112/C1111. (8
The Saint-Venant solution foris now defined to be
0 1
fSV="f(y)+xf(y), 9)
where, from(7),
1
f=Ay+ A2+ Azy° (10)
and
0
f=B,y?+ Bay>+ (k/4) Azy*. (11)

In (10) and (11), we have discarded null-stress terms. The axial

and shear stresses follows frg® and(9)—(11) as
05V=2B,+6B3,+ 3kAgy?+ X(2A,+6Azy)

(12)
V= —(A1+2Ay+3A3y%), o3'=0.
The face condition$4) of zero traction yield
Al=_3A3, A2=O (13)

VSV=0(X)+(1/2)C11y T+[ (K4 Cy104y?— 1)
+(1/2)C12243-y?) 1y Q—(3/4) C112M (X)y?

=v(X)+Ax(Y) T+ A(Y)Q+By(y)M(X). (21)
Next, from (2), with a=1, =2, (5), (15);, and(21),
U, y"=—0(x) = (34 C1159°Q+2C 11f, 1/(x,Y)
—4C i, fy(X,Y), (22)

wherew=v'. Thus, integrating with respect {0 using (15} and
(16), absorbing the term-(3/2)C1,,xQ into the function of in-
tegrationu(x) that arises, and setting
w=w(X)+(1/2)Cqo11T+4C151Q, (23)
we have
USY=u(X) — &(X)y+(1/2) C1o1y T-[(K/2)C1p1(1~y?)

+C12141+Yy?) + (14 Ci129°1yQ—(3/2)C 121 M (X)y?

=u(X) — 0(X)y+Ap(Y) T+A(Y)Q+Bi(Y)M(x).  (24)
Thus, we may writg21) and (24) in the form
USV=u(x)— w(X)yi+A(y)-T+B(y)M(x), (25)
where
U=[U} u= ! (26)
\Ak v’

dA=[A.s(y)], B=[B,(V]".

an
The remaining unknown constants are related as follows to theginaly, substituting(24) into (2), with @= =1, noting (8),
net forces EHW(T,Q), and the momentE H2WM, acting over ang using(16), we find that

any cross section:

1 1
T:f ody=4B,+2kAg, Q:f rdy=4A;
-1 -1 (14)

1
M=- J yody=—4(B3+XxA3).
-1

The dimensionless forces and moment satisfy the ovésahm-
like) equilibrium equations

T,=0, Q,=0, M,+Q=0. (15)
Thus, Airy’s stress function takes the explicit form
FSV=(1/4)y*T—[(k/8)y?— (k/16)y*+ (3/4xy]Q
—(LHM(x)y3. (16)
Moreover,(12) can now be written
0 0
o>V=A(y)-T+B(y)M(x), 17
where
s o [1/2 (ki4)(3y*—1
o= (:S‘q T:B}‘ :[ 0 ((3/4)1)((1y—y2)) ’

866 / Vol. 68, NOVEMBER 2001

U’ (X) = @' (X)y=(1/2)Cy111T +(1/2)C113 Q- (3/2)Cy11 M (X()ZB;)

Thus, (20), (23), and(27) imply that

P u’ T
yi=lv' —w|=Al Q], (28)
X ' M
where
(1U2)Cy111 (1/2)Cyyy 0
A=| (U2Cypyp  4Cypo 0 (29)
0 0 (312)Cyyy

The beamlike strain-stress relatiof®8) are notable because
they areidentical—not merely of the same form—as the strain-
stress relations for a beam undgbitrarily prescribed end loads
and/or displacementgonsistent with global equilibriumThis is
shown for general beams|ii—4] and is shown in the next section
for anisotropic beams of narrow rectangular cross section. Note
also that the exact beam theory is of Rankine-Timoshenko type
with the added feature that, in an anisotropic beam, the axial force
T also contributes to the shear strayn Finally, note that if we
choose our nominal Young's modulsso thatCqq1,=1 (as we
may always dfj then the material matriA given by(29) depends
on two-dimensional elastic constants onB,, and Cy515, the
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remaining threeC1,,, Ciz22, @andCyyz,, having no influence on pretations, depending on whether=3=0 or w=w’=0 at a
the exact one-dimensional beam theory that emerges from planall. (See Section H in Chapter IV ¢6] where these and other

stress theory.

4 The Betti-Rayleigh Reciprocity Principle and the
Generalized Displacement
Let o=[o,7]" and consider any two solutiorss= (U, o) and

§=(U,E) of the field equations of plane stre¢&) and(2), that
satisfy the face condition of no tractio®). Further, let

1
[s:sl= f (0-U—0-U),dy. (30)
-1

Then the Betti-Rayleigh Reciprocity Principle implies that
[s.5%V]a=[s,5°"]x V[a,x]C[0]] (31)

That is,[s,s°V], is a constant.
Introducing the representatiolis7) and(25) into (30), we find
that

[5,5°V]=T-[u(x)=TUX)]+MX)[w(X) - ()], VYT,M,
(32)
where

1 0 1 0
Usf (AT-U-AT-0),dy and Zosj (B-U—B-0),dy.
-1 -1

(33)

We call the displacement-rotation pali,fv) the generalized dis-
placement An essential property—Property 10 ja]—of these
guantities is that

U=u and v=w. (34)
To prove this, first note thdtl4) and(17) imply that
1 0 1 0
f_l{l,y}A(y)dy={1,0}, f_l{l.y}B(y)dy={0,—i},
(35)

where 1 is the two-dimensional identity tensor amds a unit
vector along thex-axis. Thus, by direct calculationi33) implies
that

uSV=u and @%V=w. (36)
(This is Property 6 if4].) Now set
U=USY+UR and o=0°V+ o, 37)

where the superscriptR’ stands for “residual.” Then, by(32),
(33, and(37),

TARX)+M(X)@R(x)=0, VT,M. (38)

possibilities are discussed.
For our rectangular, anisotropic strip, it seems reasonable and
simplestto define built-in at ¥ 0 to mean

u(0)=0, w(0)=0. (39)

If the right end of the beam is subject to the generalized stress
(T,M), then, by (15) and(25), these conditions induce tlaint-
Venantdisplacement boundary conditions

USM0y)=A(y)-T+B(y)(M+1Q). (40)

These boundary conditions in plane stress theory are special be-
cause they produceo edge effect at the left end. Likewise, by
(17), there will be no edge effect at the right end of the beam
providing the prescribed stresses of plane stress theory are given

by

0

SM1,y)=A(y)-T—(3/2)yiM. (41)

Beam Boundary Conditions Induced by More General
Plane Stress Boundary Conditions. To illustrate what happens
if the boundary conditions at=0 (and, by analogy, at=1) are
more general thaf40), let us consider four cases: For simplicity
the boundary conditions the right end of the beam will be taken to
be of the form(41) so that there will be no end effects there.

(A) Stresses Prescribed:
o(0y)=a(y). (42)

(B) Axial Stress and Vertical Displacement Prescribed:

a(0y)=a(y), V(0y)=V(y). (43)
(C) Shear Stress and Axial Displacement Prescribed:
7(0y)=7(y), U(0y)=0(y). (44)
(D) Displacements Prescribed:
Uy)=0(y). (45)

In case(A), the boundary conditions for the exact beam theory
follow immediately from(14) as

1

1
f=T=f &(y)dy, M=h7|+|<3=—f
-1

1yt‘r(y)dy- (46)

To determine the associated beam boundary conditions in cases
(B)—(D), we introduce the technique first proposed by Ladeve
[5] and later developed by Gregory and War. To this end, in

But sR=(UR,0%) is a solution of the equations of plane stresghe notation of(30), we take the Betti-Rayleigh Principle in the

theory for which the associated generalized stréE3 NIR) is
zero. HenceliR and®R areindependentf T andM. Thus, (38)
can be satisfied if and only @R and @R vanish, so thai36)
implies (34). Henceforth, we may drop the tildds-) over the
displacements and rotation.

5 Boundary Conditions

form

[s—5%Y,5%To=[s—5%Vs%], xe[0J], (47)

wheres is the (unknown but uniquesolution of a plane stress
problem,s®V is the associatelinique but unknownSaint-Venant
solution, ands® is one of a certain set afanonicalsolutions of
plane stress problems, each of which is chosen so that the left side

A major problem in so-called higher-order beam, plate, anaf (47) becomes known, depending on which of the cdBgs(D)
shell theories—a problem that often goes unmentioned—is howwe are consideringThis set of six canonical problems, that serve
prescribe proper boundary conditions. Actually, there are twas sorts of Green'’s functions, may be computed once for all either
problems, one due to lack of data and one due to too much. Huy finite element methods or by the analytical-numerical projec-
example, in classicdEuler-Bernoull) beam theory, the boundary tion method of Gregory and GladwelB].) Moreover, Saint-
conditions at a built-in end are clear: Whatever the measure of tenant’s Principle for an anisotropic strip guarantees, modulo a
vertical deflectiony, it and its axial derivativew’, must vanish. rigid-body displacement(that we suppress that s—sSV ap-
However, in the Rankine-Timoshenko theory of shear-deformahpeoaches zero as we move into the beam from the left ek
beams, the vertical deflectiamand the rotatior8 are independent [9] and[10] for a proof and numerical values of the rate of decay
kinematic variables and “built-in” has at least two physical interfor a range of values of the dimensionless elastic constants
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Caprn-) Thus, ifx is sufficiently large’, (47) takes the more ex-

plicit form

1
J’ [(0— 0
-1

Finally, we take
u®(0)=v%(0)=

UC—o®(U-U)],_ody=0.  (48)

®®(0)= (49)

since these values of the generalized displacement associated with

1
{u(0),w(0)}= f (05 ,0=7°Vg )x—ody. (57)
-1

In case(D), o(0y) and 7(0,y) are unknown so we must take

the canonical solutions represent merely rigid-body displacBy (25), (33), and(49),

ments. o -
In case (B), T=T=/',6(y)dy and M=M+IQ
=—Jt 1y&(y)dy are known, whereas(0,y) andU(x,0) are not,

so we defines® to be that solution of the equations of plane stresgere we see that we need three canonical soluttsﬁwss

uc(0y)= (58)
Then (48) reduces to
1
J [0°(0-USY)],_ody=0. (59)
-1
l ~
f (6°-U)y_ody=TC-u(0)+M(0)w(0). (60)
-1
and

satisfying(4), the homogeneous face traction conditions, plus tfg@ each subject to the same boundary conditi® at the left

end conditions

0 0
VE(0y)=0(0y)=0, o°(I,y)=[A1Y).A2]". (50)

(This second condition implies th@°=QC=1.) Thus, (48) re-
duces to

f ll[w— oYUV =V, _ody=0.  (51)
But, by (14),, (17), (25), and(33),
f 11(chsv_ sSUC) _dy
=v(0)—[Tu®(0)+Quc(0)+MwC(0)].  (52)

By (49), the term in brackets vanishes so that fr@f) and(52),
1
U(O)zf (V- &U%),_dy. (53)
-1

In case(C) Q=Q=/1,7(y)dy is known, butV(0y) and
o(0,y) are not, so we need two canonical solutiwfsandsf;’. In

end of the beam and, k1), to the following three sets of stress
boundary conditions at the right end:

c 0 1|0
uv,w(l!y):A(y)° ol'l1l’

8 ]—(3/2)yi{0,—|,1}. (61)
Thus,

1
{u(0),v(0),w(0)}= f_l(tfﬁ,v,w'o)x:ody- (62)

6 Conclusions

We have derived an exact, one-dimensional theory of beams
from the linear, two-dimensional theory of plane stress for an
elastically anisotropic rectangular strip. Our final equatighs)
and (28), resemble those of the Rankine-Timoshenko theory of
shear-deformable beams, but, unlike the latter, involve no ap-
proximations whatsoever beyond those of plane stress theory it-
self. In contrast to the general development of exact beam theory
in [1-4], all the results herein are explicit and assume no special
elastic symmetriegbeyond those implies by the existence of a
strain-energy densijy Further, using ideas first presented by
Ladevee [5], we have worked out the boundary conditions for
our exact beam theory implied by imposing various combinations

both subcases, the boundary conditions at the left end of the beafvend tractions and displacements in plane stress theory. Imple-

are identical:
UC(0y)=17°(0y)=0. (54)
Thus, (48) reduces to
1
f [(7=r*VC=0 (0 - U] ody=0.  (55)

menting these boundary conditions requires that we solve, only
once, six canonical plane stress problems.

As in [3] and [4], we can extend our analysis to beams of
piecewise constant width subject to arbitrary body forces and face
tractions. Furthermore, it is not difficult to develop an exact theory
for beams in which the anisotropic elastic coefficients vary with
depth. We leave this as a future project.

Agaln by (14), (17), (25), (33), and(49), this expression reducesRmcer(':'n(:(':'S

1
TCu(O)+MC(O)w(O)=j (cC0—-7VO),_ody.  (55)
-1
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Higher-Order Zig-Zag Theory for
Laminated Composites With
Multiple Delaminations

A higher-order zig-zag theory has been developed for laminated composite plates with
multiple delaminations. By imposing top and bottom surface transverse shear stress-free
conditions and interface continuity conditions of transverse shear stresses including
delaminated interfaces, the displacement field with minimal degree-of-freedoms are ob-
tained. This displacement field can systematically handle the number, shape, size, and
locations of delaminations. Through the dynamic version of variational approach, the
dynamic equilibrium equations and variationally consistent boundary conditions are ob-
tained. The delaminated beam finite element is implemented to evaluate the performance
of the newly developed theory. Linear buckling and natural frequency analysis demon-

strate the accuracy and efficiency of the present theory. The present higher-order zig-zag
theory should work as an efficient tool to analyze the static and dynamic behavior of the
composite plates with multiple delaminationgDOI: 10.1115/1.1406959

number of layers. Thus to reduce the active degrees-of-freedom of

1 Introduction
As the increase in the application of composite materials to tgéf%eaf)[(ikélt_e% a global-local approach has been proposed by Cho

primary loading structures, the refined strength evaluations anc:\n the recent study, zig-zag higher order theories have been
stress predictions are required. For the enhanced analysis of la@iranded to the wealiened interface probl@d,20). But the
nated composite plates, three types of higher-order theory hayg_zaq theory describing opening as well as slipping behavior of
been developed. They are smeared thefiy), layerwise theory the delaminated parts are rare. Chattopdhyay and2Eldevel-
([2]), and simplified zig-zag theor§{3]). Extensive reviews up to oped higher-order theory to analyze the delamination buckling
date can be found in the review papers of Noor and Bufdn problem. However, this theory is complicated and employs many
Kapania[5], and Reddy and Robbins, J&]. Recently, so-called primary variables. In the present study, an efficient higher-order
“zig-zag” theories in the third category have been paid some atig-zag theory with minimal degrees-of-freedom is developed to
tentions because of their accuracy and efficiency in the ply-levahalyze multiple delamination problems. Linear buckling and
analysis. Most of the theories assume that interfaces are perfectural frequency problems are analyzed to assess the perfor-
bonded. However, in many applications, this assumption is nm@ance of the proposed zig-zag higher-order theory.

adequate for the prediction of the behaviors of composite Iamz'- Displacement Model

nates. Low-speed impacts by foreign objects or imperfections in . . . o )

the manufacturing process may generate multiple delaminations irf-0mposite plates with multiple delaminations are considered,
composite laminates. Compressive strength and stiffness of cdheluding an linearly elastic behavior for laminates. A schematic

posite structures with delaminations decrease significantly. TheP%— laminated composite plate with multiple delaminations is

fore, delamination buckling problem has received considerat%;w” in Fig. 1. The form of the displacement field of the per-

attentions. Extensive reviews for delaminated buckling issue c
be found in the review paper of Simitsgg.

Vibration problems of delamnated beam/plate were analyzed ﬁ
numerous researchers. Classical beam mdde9)), first-order

tly bonded layers is determined by the requirements that the
ransverse shear stresses should vanish on the upper and lower
urface of the plates, and should be continuous through the thick-
gss of the plates, including the interface between the lamina.

! ) These conditions can be satisfied by superimposing a linear zig-
shear d_eforr_natlon mod€]10,11)), and higher-order shear mOdeIzag displacement, with a different slope in each layer, on an over-
([11]) with piezolayers([12,13) are employed for the natural fre- "¢ inic varying field. We neglect transverse normal strain, tus
quency analysis. Damage detection/health monitoring problefas,nly function of the in-plane coordinates. To model the multiple
are also considered in the frameworks of vibration anal§3i)).  gejaminations, the assumed displacement field is supplemented
_ For the analysis of laminated plates with arbitrary shaped mulith unit step-functions which allow discontinuities in the dis-
tiple delaminations, finite element method is a suitable choice Hacement field.

treat the general loading, boundary conditions, layups, and geomyye start with the following displacement field for a laminated
etry. Even though finite element based on layerwise plate thegiate with multiple delaminations:

([15]) can provide an adequate framework for the delamination . P ) N 3
analysis, this theory is not computationally efficient since theda(Xa , ZD) =Ug(Xa 1)+ o (X i) ZF £0(Xa i D Z7F al(Xe 1) Z
number of degrees-of-freedom of this theory depend upon the N-1

. + > S(xa i) (2= Z)H(z-2)
k=1

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Nt —

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 12, + 2 u (X, t)H(z—z,) (1)
1999; final revision, Oct. 19, 2000. Associate Editor: A. K. Mal. Discussion on the k=1

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department of N—1

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will
be accepted until four months after final publication of the paper itself in the ASME

Us(Xe, Z) =W(X, )+ >, WhX,iDH(Z—2)  (2)
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y N—-1
Yaa=3(22—h2D) .+ 2, <85,+m>[—§+H<z—zk>]. W)
k=1

At the perfectly bonded interfaces, transverse stresses are continu-
ous. At the delaminated interfaces, transverse stresses are zero. In
the present theory, at the delaminated interfaces, transverse shear

x stress continuity conditions are assumed to be satisfied because
Delaminati zero shear stresses also satisfy continuity of stresses. Thus in ev-
\Delaminations ery interface, transverse shear stress continuity conditions are im-
) . N . ) posed. Continuity of transverse shear stresses between layers de-
Fig. 1 Geometry of laminated composite with multiple delami- . .
nations termines the change of slojg at each interface.
k _ .k K
Saiaa‘yqsy_ W,a (8)

in which the coefficienaﬁy represent the change in slope at each

whereu?, w denote the displacement of a point,J on the ref- interface and depend only on the material properties of each layer.
erence planey, are the rotations of the normals to the referencghe termw*, represent the change in slope at each delamination
plane about thex,-axis, N is the number of layers, ant(z interface. The deformed configuration and the kinematic variables
—z) is the Heaviside unit step-function. The terﬁf§, wX rep-  are shown in Fig. 2.
resent possible jumps in the slipping and opening displacementsFinally, substitution of Eq95), (6), and(8) into Egs.(1) yields
thus permitting incorporation of delamination for multilayered
plates.
Here, we assume initially all the interfaces between the layersda™ UO+UPz+UP2+ U+ Y Ul(z-20H(z- 20

. . . k=1
are delaminated. Then the number of delaminated layer interfaces

N-1

are equal to the number of the whole interfaces. The perfectly N-1
bonded interfaces can be easily simulated by setifpgw* to be + 2 UXH(z—2
zero. k=1 9)
Traction shear-free boundary conditions for the upper and lower N—1
surfaces of the plates requires thgfs|,—o,=0. For orthotropic _ Ko
layer, the shear stresseg; depend only on the transverse shear Us=w+ kzl WH(z=2z,)
strains, so the traction-free condition can be written
where
7a3|Z=O: ¢a+W,a:0 (3) N—1
_ 3h 22
N—-1
U=y, UW=-w,, UP=——0¢ —— ak ,
Voslon= et W o+ 260+3,0%+ > (SE+wh)=0 4) ¢ 7 7F o BT E ”“5(10)
k=1
(3)_ k_ ok ik 11k Tk
which are satisfied by Ui =da, Us=a,,¢,~W,, U,=u,
Y= W, (5) inwhich if we neglect the terms’ andw¥, the displacement field
' is the same as that chosen by Cho and Parmgz&R3.
3h 1 N1 C o — The strain tensor components associated with the small-
§a=7) 5 Pt op kzl (Sp+wl,) (6) displacement theory of elasticity are given by
— (0 ()4 52 (2) 4 53_(3)
where ( ), denotes a partial derivative with respect to the €ap= €ap T LEapt T €qpT T€p
Xq-coordinate. N-1
From the above Eq¢5) and(6), the transverse shear strains are + z {EEB(Z_ z) +?Z!B}H(Z_ z) (11)
obtained as follows: k=1
N-1
Yaa= 2V VBT 2, YipH (=20 (12)
X
3 where
N 1 1
A 53(225(”3,B+“%,a)v EL%Z_E(W,aB+W,Ba)'
——: 3h N-1
4 @2__ > _ k k
; Eaﬁ_ 4 (¢a,ﬁ+ d)ﬁ,a) 4h kgl (aay¢7,8+aﬁm¢w,a)‘
2] 5 1
1 E&£:§(¢a,ﬁ+ Dp.a)s
13)
K Loy K K - L= =
ea/j':z(aa7¢yﬁ+aﬁw¢w,aizw,aﬁ)l Eaﬁ:E(ua,ﬂ+ u,B a)i
X, X
1 N-1
Fig. 2 Laminate deformed configurations with multiple 7313): —| 3he,+ = 2 a‘; &, 7;23):34’(1: yzsza‘; &,
delaminations hicy ™ [
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3 Equation of Motion and Boundary Conditions

The equations of motion and the variationally consistent bound-

h
[Naﬁ,Maﬁ,ng,Rﬁgkf 0.l 12,2%,2%]dz
0
ary conditions are formulated in a weak form via the Hamilton’s

rinciple, N h
Py [NLB,MLB}:J;(nm[lxz—zo]H<z—zodz (18)
f f (0a556a5+0a367a3)dv—f p(u,du,+ uzduz)dV "
oLV v 1) 2 o 2
[Vo' Vo' Qul= | 043lz,2°H(z-7)]dz
0
— | N%usz,8u3,dQ— | qéuzdQ}dt=0 14 — :
L aplsa®lsp Jﬂq Hs ] ’ (9 and the inertia terms are defined as
where a dot over quantity refers to a derivative with respect to e 3h - 2) Nt T - 2)
time t, p is the mass density2; are the constant in-plane edge Re=R, =5 RaF .21 Aya| M= 5 Ry (19)
loads, andj is a specified distributed transverse load. In Ef4), N
V is the volume of the plate an@ is the reference plane of the Y h
plate. [NOt’MavR(a)'R(a)]: pua[l,Z,ZZ,ZS]dZ
The equations of motion of the present theory can be derived by 0
integrating the derivatives of the varied quantities by parts and o h
collecting the coefficients odu’, éw, 8¢, , ou',, and sw', [N'a,M'a]=f pU[1,(z—2)]H(z—z)dz (20)
0
0. _N
Su%:N, 5 5= N, o .
i =i v - V,Q'1= Ug[1H(z—2z)]dz
é\N:MQB,a,BJrNgBW,Q,B-l_NglﬁW,aﬂ+q:Ma,a+V [V.Q'] jop 3[1H(z—z)]
8¢, R, 5 B+\7a:]§a (15) In Eq.(15), as defined by Lee et d15], N3 5, N%;, N3} are the
- . constant in-plane edge loads defined, respectively, by the follow-
8Ug 1Ny s=N, ing:
SW Mg st 0+ NOW g+ NIEW =M, + Q) Nag=—MNas  Nog=—Anis. Ngh=—nlg, (21)
and the associated boundary conditions are specified as where) is a buckling parameten, s is the specified value of the

N,zvs=0 or sul=0

‘ . SN fEFIH(z—z7)dz
(M g0+ NO W o+ NOW! .~ M ) v5=0 or Sw=0 i _Tkelg (272

compressive or shear in-plane force, mg andnEB are given as

naB_ EN_ fzk+ldz naﬂ (22)
Mzv=0 or éw ,=0 K=
-~ N Z
R,zvp=0 or 88,=0 (16) o ZheafyH(z=z)H(z-7))dz
— . Nap= N Zoag Nag - (23)
Nl zv=0 or 5u,=0 Bi-afytdz
(Mg 0+ NOwW ,+NIW ,— M) v,=0 or sw'=0 4 Constitutive Equations and Inertia Coefficients
M svp=0 or SW = The constitutive equations of th¢h orthotropic lamina in the
. ¢ “ ] laminate coordinate system are given by
whereq' is qH(z—z), the stress resultants are defined as o= 0 o=k
3h N—1 O-aB: zxﬁyws'yw' UQSZQa3ﬂ37ﬁ3 (24)
Ra5=Rﬁfé—7R§§+2 a‘W(Miﬂ;—%R(fﬁ)) where Q. is the transformed reduced stiffness of thih
=1 (17) lamina.
N-1 1 Using the definition of the strain tensor Eq4.1) and (12),
V,=3V2-3hvD+ > a [Q ——V(”) substitution of Eqgs(24) into Egs. (18) yields the constitutive
“ “ =T hy equations of the laminate:

Mg Aotvo Addye Aubyo Aupyo Buire Eugh o
R [ | A A Al A BUZ. Elf|| o2
|| S e e 2 R B | O
N, ) |Beere Bosw Busw Bago Paom Fap || 3
Ef E BB Ef. Flo Elgl]

v Af?,)ﬂs AEXSS)BS Ej%)z(3ll)33 7(313)

V(;) = A(Q33),B3 A(a43),33 EL(32233 7([523)

Q. Eidhs ElZhy Elgg 7

(25)

(26)
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where

k+1—

A Qkpy02"dz, (M=0,1,2,3,4,56

aByw

2.

N

Bl 2 k 16 (z—z))H(z—z)z"dz, (m=0,1,2,3
afye” & afyw j j 1,2,
N k+ 1—
Eja(;rany)w kElJ QaﬁwH(z z)z"dz, (m=0,1,2,3
=1

aByw Ef QaﬂywH(z Z)H(Z ZJ)dZ

k+ l—

Qaﬁw(z z)H(z—z)H(z—z)dz (27)

o3, [

k+ 1—

QY pyu(z—2)(2—2))H(z—z)H(z~7)dz

o, [

k+l—

Qa3732 dz, (m=2,3,4)

e, [

k+ l—

Qa3y3H(Z ZJ) de (m 12)

5?;3*2 f

k+1—

Qa3y3H(Z Z )H(Z ZJ)dZ

-y

and substitution Eq99) into Egs.(20) yields the inertia coeffi-
cients as follows:

. 1O 0 @ @ o ey . ©

( 3 (UMY
Ne D@ @ @ Wi -

M, 0 0 0 0 1 2 U£11>
- 2 3 4 5 j(2 j(2 .

) RE}Z) > |8) |8) |8) |8) |Jl() |12() < U(aZ) >
A g : : -
R}_> 19 @ e ® e i U(a)
M, 1O i i@ i@ i ul,

. ot
\ Na J |i2(0) |i2(1) |i2(2) |i2(3) |i4j IiEj \ Uja J
) ’ (28)
v 0 j(0 .
[v} 11y )“w] 29)
--i = 10 . _J
Q ||2( ) |g w
where
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Zk+1
pz"dz, (m=0,1,2,3,4,5,6

(30)

p(2—2))(2—z))H(z—z)H(z—zj)dz

Zx+1
p
Z

f2k+1pH(Z—Zi)H(Z—Zj)dZ.

Zk

(z=2z)H(z—2z)H(z—-z)dz

5 Finite Element Model

To assess the validity of the proposed theory, a finite element is
developed for one-dimensional problems. The primary displace-
ment unknowns are expressed in terms of nodal values and shape
functions as follows:

(W, ¢ .U;>=mE:1 Ner (U2) i (B s (UL ) o]

w:mgl{Pm<w>m+me(w,x)m+Hym<w,y>m} (31)

=3

w! :m A {Pm(Wl)m+ me(w,x)m"' Hym(w,y)m}

wheren is the number of nodes in a typical finite elemaxt, is
a Lagrangian interpolation function aml,, Hym, Hyy, are Her-
mite interpolation functions. In this study, we used a two-noded
beam element with one- dimensional linear Lagrangian interpola-
tion functions forua, qba, . and Hermite interpolation functions
for w, wi.

The finite element model of the linear buckling and natural
vibration problem can be expressed as follows:

([K1=A[SD{u}={0}, and ([K]—-w’[M]{u}={0} (32)

where[K], [S], and[M] are the stiffness matrix, the geometric
stiffness matrix, and the mass matrix. The parameters, and
{u} denote the buckling load, the natural frequency, and the eigen-
vector of nodal displacements corresponding to an eigenvalue,
respectively.

The strains are defined from the approximation of kinemtic
variables

{€apt=[Blo{un}, {vast=[BIs{un}
1) (2) (3

0 )
{Eaﬁ} {f(a,c;r €ap€ a,B'EaB!EJa,BI;{)zﬁl}T

(33)

.
{Vast= {)’(1) 7(613) Vja?,f}T
{upb={u w,w ¢, ul ,wiwl T

where [B],, [Bls, and {u,} denote the in-plane strain-
displacement matrix, transverse shear strain-displacement matrix,
and nodal displacements, respectively.

In the beginning of the construction of the displacement field of
the present theory, we assumed that the delaminations exist at
each interface of laminates, but reduced the presented delamina-
tions using the following strain-displacement matrix relationships
for the one-dimensional case

(34)
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[Blo=[Bp1, ... .Bpnl, [Bls=[Bs, ... Bsnl (35)
in which
[ Nix 0 0 0 [0lo [0lo 0o 1
0 i,Xx _Hxi,xx 0 I_OJD LOJD LOJD
0 0 0 AcNix  10lp [0lp [0lp
5 0 0 0 Ni x [0lo [0lo [0lo (36)
N Y 0 0 apNix  10b
: : : : : [Pi,xx] [Hxi,xx]
0 0 0 aj Nix [0b
.{O}Nfl {O}Nfl {O}Nfl {O}Nfl [Ni,x] [O]NflxD [O]NleD_
0 0 0 2AN;
0 0 O 3N
By=| 0 0 0 apiN; [Olsn-1)x3p (37)
0 0 0 ay™N
I
where 6.1 Example 1: A Delaminated Composite Beam-Plate
N_1 Under Axial Compression. The first example analyzed by the
A= E 3h+ EE K N 1= Ni x present theory is the linear buckling problem. First, a specially
¢ 2 h & an|, [Nixd= . ' orthotropic composite laminate containing one centrally located
N-1xD (38) Midplane delamination is considered. The results are compared
with those reported by other researchers. The material properties
0P [— i xx in crossply beam-plate examples are given as follows:
ixx] = . )
“IN-1xD E;;=26.25<10° psi, E,,=1.49x10° psi,
[Hyixcl = X1xx ' (39) G,=1.04x1C° psi, v,,=0.28 (40)
"IN-1xD

whereE; is the Young’s modulus in the fiber directioB,, is the
Young's modulus in the transverse directioB;, is the shear
modulus, andv,, is the Poisson’s ratio.

N is the total number of layers, ard is the total number of
delaminations{0},,, |0|,, and[0]x, is themx1 null vector,

the 1Xm null row vector, andnxn the null matrix, respectively.  The results of this typical example are reproduced from Lee
Thus, the size of the element stiffness matrix ist@D)X(4 et al.[15]. The thickness-to-span length ratio/f) is assumed to
+3D), independent of the number of layers, and only dependesé very small and equal to 400. The numerical results of the
upon the number of delaminations. nondimensional buckling loads with changing delamination length
from the present theory shows good agreement with those from
Simitses et al[24], Chen[25], and Lee et al[15]. They are

) . shown in Table 1.

_To examine the accuracy of the present theory, buckling andgecong, a simply supported composite beam-plate is consid-
vibration eigenvalue problems for laminated composite beam wilhieq_ The elasticity solution for this delamination buckling prob-
multiple delaminations were considered: first, the buckling of they, of 5 beam-plate was proposed by Gu and Chattopadiy
delaminated composite beam and, second, the vibration of tge configuration of a simply-supported beam-plate with a single

delaminated composite beam. Some of the results of the presggiamination is given in Fig. 3. The material used in this example
theory are compared with the exact elasticity solutions when thgy < follows:

are available.

6 Numerical Examples

E_ =25x10° psi, E;=1Xx10° psi, G, 1=0.5x1C° psi (1)
Gr71=0.2x10° psi,

Table 1 Comparison of Nondimensional Buckling Load for v r=v11=0.25

Various Length of Delamination

Lee Anti- Present Anti-
a/L Simitses Chen Symmetric symmetric Symmetric symmetric a
0.1 0.9999 0.9999 0.9999 1.9481 0.9999 1.9494 «— lhl
0.2 0.9956 0.9956 0.9956 1.4360 0.9956 1.4371 -
0.3 0.9638 0.9638 0.9639 1.0245  0.9641 1.0251 :> | h <:
0.4 0.8481 0.8561 0.8562 0.8482 0.8566 0.8485
0.5 0.6896 0.6896 0.6898 0.7967 0.6901 0.7971 T
0.6 0.5411 0.5411 0.5413 0.7928 0.5415 0.7933 ‘
0.7 0.4310 0.4310 0.4311 0.7629 0.4312 0.7635 « >
0.8 0.3514 0.3514 0.3515 0.6857 0.3516 0.6863
0.9 0.2923 0.2933 0.2934 0.5947 0.2934 0.5951 Fig. 3 Configuration of a simply supported beam-plate with a
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where E, G, and v represent the Young’s modulus, the she
modulus, and the Poisson’s ratio of the material, respectitely.
denotes the fiber direction affddenotes the direction perpendicu-

lar to the fiber.

The plate is thick L/h=10) and the delaminated layer is rel
tively thin (h,/h=0.8). Figure 4 presents the critical loads no
malized by the value calculated by the classical laminated the
(CLT). The results obtained fd105/90,y/05] composite laminates
are compared with those of CLT, the elasticity solution, and th
layerwise theory. The results of the present theory show go

+—>r

L

Fig. 5 Configuration of a clamped beam-plate with centrally
located delaminations
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Fig. 6 Normalized buckling load versus delamination length
for [0//90/90/0] composite, symmetric mode
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ar_provide a sign change of the shear strains at the delamination

4 erfaces. This makes the buckling load higher than that of elas-
I
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Fig. 7 Normalized buckling load versus delamination length
for [0//90/90/0] composite, antisymmetric mode

correlation with the elasticity solutions in the small-sized delami-
rpation. However, in the mixed-mode range, that is, in case of the

aIarge-sized delaminations, the present theory provides stiffer

buckling loads compared to those of elasticity and other higher
order theories, especially for thicker cas&s=(10). This situation
is due to the fact that the deformation of the present theory cannot

ity and closer to that of the classical plate theory.

Third, a clamped beam-plate containing one centrally located
Slamination is considere@dFig. 5). In this example, the stacking
sequence of the delaminated compositg0ig90/90/q symmetric
and[0//90/0/9Q antisymmetric layup. Figures 6 and 7 present the
normalized buckling loads for symmetric and antisymmetric
buckling mode with symmetric layups. The results of the present
theory are compared with those of CLT and those of layerwise
theory for various length-to-thickness rati8=L/h). As can be
seen, the numerical results of the nondimensional buckling loads
with changing delamination length from the present theory shows
good agreements with the results of layerwise theory. Figure 8
present the normalized buckling loads for various length-to-
thickness ra-

(=
o
LN LRARE REEA |

Nommalized buckling load
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Fig. 8 Normalized buckling load versus delamination length
for [0//90/0/90] composite
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1.1 - Symmetric mode for clamped beam (S=20) ]:I;i:t')elelz Fundamental Frequency for Delamination Along Inter-
1¢ ’
| a Experiment Analytical
0.9 F ‘ \ [0//90/90/0] in Specimen 1 Specimen 2  Specimen 3 ModeP Present
= - ! —_—
E o1 0.0 79.875 79.875 79.750 82.042 81.898
S08fF ! A
2°F [0/96//90/0] 10 78376 79.126 77.001 80.133  81.197
0 E —— = —— [0//90/90//0] 2.0 74.375 75.000 76.751 75.285  76.594
g F —— =~ [0//90//90/0] 3.0 68.250 66.250 66.375 66.936 67.453
s 06 [ 4.0 57.623 57.502 57.501 57.239  57.784
2°°F i@ [0//90//90//0]
T05F -
@ s Table 3 Fundamental Frequency for Delamination Along Inter-
‘-5 04 face 2
E 0.3 é. a Experiment Analytical
Zz E in Specimen 1 Specimen 2  Specimen 3 ModeP Present
02F 0.0 79.875 79.875 79.750 82.042 81.893
B 1.0 78.375 78.375 76.626 81.385 81.248
0.1F - 2.0 75.126 75.250 75.001 78.103  76.963
- b - rras 3.0 64.001 70.001 69.876 71.159 68.303
00 . . 1 4.0 45.752 49.751 49.502 62.121 57.953
Delamination length, a/L
Fig. 9 Normalized buckling load versus delamination length
for [0/90/90/0] composite with S=20, symmetric mode comparable results to those of layerwise theory for the buckling
loads for various delamination sizes and length-to-thickness ra-
tios.

The next analysis is performed for a beam-plate with various
elaminations and each ply having the same thickness. The buck-

modes of beam-plate have all the three possible buckling mod 'gg load has been nc_eraIized with respect to the critica_ll buckling
i.e., global symmetric, antisymmetric, and local symmetric modetgald for the undelaminated composite. The length-to-thickness ra-

. ; ; ol d to be 20. The nondimensional buckling load of a

Then, the range of antisymmetric modes increas8 dscreases. 0 1S assume . P .
: : ; - 10/90/90/7 beam-plate is presented in Figs. 9 and 10 for various
Even in the antisymmetric layup case, the present theory i elaminations and the size of delamination. Figures 9 and 10

show the normalized buckling loads for the symmetric and anti-

symmetric buckling modes, respectively. Once more, the results
L5 Antisymmetric mode for clamped beam (S=20) of_ the present theory show good agreements with those of layer-
- wise theory.

tio and delamination size with an antisymmetric layup. In thia
case, as the size of the delaminatiail() increases, the buckling

6.2 Example 2: Free Vibration of Cantilevered Compos-
— = [0//90/90/0] ite Beam With Multiple Delaminations. The second example
. [0/90//90/0] analyzed by the present theory is the free vibration problem. First,
== — [0//90/90//0] there is a cantilever crossply composites beam with embedded
e — [0//90//90/0 delaminations of varying size and at several different locations.
{0//90//90//0]] The material properties in this example are given as follows:

E;;=19.6x10° psi, E,=1.5x10° psi,
O ----- G1,=0.725< 1P psi
‘ 11,=0.33, p=1.3821x10"* Ib.—in*

(42)

» Nommalized Buckling load
~1
w

\ o wherep is a mass density.

o, e The configuration of this example is shown in Fig. 11. In this
example, the stacking sequence of the delaminated composite is
[0/90],5 and the thickness of the individual plies is 0.04 in. The
results of the present theory are compared with those of Shen

25

T DR %P‘\OT o W
0.2 0.4 0.6 0.8 1
Delamination length, a/L

(=4

Fig. 10 Normalized buckling load versus delamination length

for [0/90/90/0] composite with S=20, antisymmetric mode a=3L/20
[0/90/0/90]s cantilever composite beam
y L=5in 0°
: 907
a o0 h
I\ 00
= @ D) 13
~— H=0.04in L

—_ X

X X =—

Interface delamination Delamination at interface 3 L

Fig. 11 Configuration of cantilevered  [0/90],s composite beam Fig. 12 Configuration of cantilevered [0790/90/0] composite
with a single delamination beam with multiple delaminations

Journal of Applied Mechanics NOVEMBER 2001, Vol. 68 / 875



Nomalized Natural Frequency

=3

F — LW

o S(L/h)=400 — —O— — Present
E 3rd Frequench

:_ 2nd Frequench

- IstFrequency

[ G =

c. . by T SRR |
0 0.2 0.8 1

Fig. 13 Normalized natural frequency versus normalized dis-
tance for [0/90/90/0] composite with S=400

20~
- S(I/h)=50 _ LW
18 — —O— — Present
E 3rd Frequench
16 -
oo
I
S 14
=) o
g
= 12 =
£t
g 10f
« N
Z
E 8:_ 2nd Frequench
E "t WQ-@
) - ==
-4 41~
2F 1st Frequency
[ C—-e © S = S ©
O‘w||I||||Iw|||||1||l\||||
0 0.2 . 0.6 0.8 1

0.4 .
Nomnalized distance (x/L)

Fig. 14 Normalized natural frequency versus normalized dis-
tance for [0/90/90/0] composite with S=50

Normalized Natural Frequency

- S(I/h)=10 — 1w

- — —O— — Present
I 3rd Frequench

[ =R O -9«

i ~g - O 7z 0

; 2nd Frequench

[ -9 -

B 1stFrequency

= e Fay oY O Pt Fa¥ —& o

I BRI SR SRS R |
o 0.2 0.6 0.8 1

0.4 .
Normalized distance (x/L)

Fig. 15 Normalized natural frequency versus normalized dis-
tance for [0/90/90/0] composite with S=10

876 / Vol. 68, NOVEMBER 2001

et al.[10] in Tables 2 and 3. Tables 2 and 3 show the effect of

delamination size and interface location on the fundamental natu-
ral frequencies of the beam. As it is shown, the results of the

present theory show good agreements with those of experiment
and the analytical results by Shen et[dl0].

Next, a cantilever beam-plate containing three delaminations is
considered. In this example, the stacking sequence of the delami-
nated composite i0//90//90//Q symmetric layup. The configura-
tion of a cantilever beam-plate with three delaminations is given
in Fig. 12. Figures 13, 14, and 15 present the normalized natural
frequencies with respect to the first natural frequency of the clas-
sical lamination theory for perfectly bonded composites. As
shown, the present theory gives comparable results with the lay-
erwise theory for the natural frequencies for various delamination
sizes and length-to-thickness ratios. However, in the case of the
thick plate &=10), as shown in Fig. 15, the third natural fre-
quency predicted by the present theory is higher than those of the
layerwise theory. This is due to the displacement field of the
present theory which cannot allow the sign change of the shear
angle at the delamination interfaces.

7 Conclusions

A higher-order zig-zag theory has been developed to study the
laminated composite plates with multiple delaminations. The
present theory can provide accurate predictions of buckling loads
and natural frequencies for various types of delaminations in the
moderate thick plate range. The present theory determines the
number of degrees-of-freedom of an undelaminated zone indepen-
dently of both the number of layers and the number of delamina-
tions. In the delaminated zone, the minimal number of degrees-
of-freedom are still retained. Thus this theory can be applied to
the problems with many layers and multiple delaminations. How-
ever, the present theory has its own drawbacks. In the case of a
thick plate with large-sized delaminations, the prediction of buck-
ling loads is overestimated compared to the elasticity solutions. In
this case, the mixed buckling mode is dominant and it requires
opposite signs of transverse shear strains of delaminated upper
and lower parts. However, the present displacement field provides
stiffer solutions than those of elasticity since the displacement
field of the present theory does not allow sign changes of the
transverse shear strain at the delamination interfaces.
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In practical analysis, under a plane stress condition, a unidirectional lamina can be
assumed with E=E; from geometrical symmetry consideration. However, from an aca-
demic point of view, it is interesting to study the case of a lamina wit# ;. In this
paper the preliminary results of the physical phenomenon about the effect of different
transverse moduli Eand E; on the through-thickness thermal expansion coefficiegts

of quasi-isotropic composite laminates is present¢®Ol: 10.1115/1.1410937

Introduction coefficients of hygrothermal expansion in a laminate with 40 ran-
{flom plies or more are close to those values obtained from the

Composites for airframe structures must be designed to wi halytical formulation.

stand the great diversity of terrestrial environments encountered

) . ) : . "\n"this paper, the preliminary results of the physical phenom-
a variety of operations. A typical environmental effect is the hognon aboEt ?he’effecfof diﬁere)rlut transverse mc?ﬂiilliand E[: on
wet condition in Whl(_:h the elasticity and strength design allow[- through-thickness thermal expansion coefficientsf quasi-
aglrisenotgstge ecr?:r:r?torselt;ugt]i% fgctiﬁna:onrgzc\t\]/eislalg pﬁ:;fgrti;&?gropic composite laminates is presented. A dimensionless math-
Ipn the terreStriaI environment the combined effectsyofptempe.ratu?matical model has been used to study the influence of the various
7 . . ransverse elastic moduli, and E; of lamina on the through-
and humldl_ty must be considered when assessing long-term St% ckness thermal expansizon coef?‘icients of the laminate ’
tural integrity ([1]). '
In some points of view, composite materials can be considered
as a structure[2]). Since a number of laminae consist of the

fibrous composite laminate, the mechanical behavior of the lanfResults and Discussions
nate is dependent on the lamina material properties and stackingoth three-ply[—60 deg/0 deg/60 ddglayup and four-ply
sequences as well as lamina hygrothermal effects. [—45 deg/0 deg/45 deg/90 deryup have only isotropic exten-
_ Inaquasi-isotropic laminate the extensional stiffness m&Jx sional stiffness matrikA], and the other stiffness matrices] and
is isotropic, but, in general, the other coupling and bending stleD] do not have isotropic fornf3-5]).
ness matricefB] and[D], respectively, may not have an isotropic - ajthough the model of Fukunaga has the isotropic extensional
form ([3—5)). Both three-plyf —60 deg/0 deg/ 60 dddayup and  giitness matriyAl, the null coupling stiffness matrbg], and the
four-ply [—45 deg/0 deg/45 deg/90 deigyup have only isotropic jsotropic bending stiffness matrpD], the model of Fukunaga is
extensional stiffness matripA], and the other stiffness matricesgpiained from certain ply orientations and sequences with at least
[B] and[D] do not have isotropic forn{3—5]). ) 36 or more plies. Therefore, the models of Fukunaga can only
According to Wu and Avery6] the isotropic laminates can be gyajuate the values of the through-thickness thermal expansion
obtained from certain ply orientations and sequences with at leggkfficients for the real composite materials with specific
36 plies. Yeh et al([7,8]) indicated that a fairly isotropic laminate grientations.
is rea_ched if the number of arbitrary orientation plies in the lami- gjnce the dimensionless mathematical model is obtained from a
nate is 40 or more. In a recent paper, Y&} presented that a sjmple random statistical approach, in the mathematical point of
quasi-isotropic and quasi-homogeneous laminate can be obtaigggy it is more generalized in doing the analysis of physical phe-
from a dimensionless mathematical model with 40 or more pli¢gmenon and evaluation of mechanical behavior about real com-
of arbitrary orientation. In other words, this dimensionless mathysite materials with general ply orientations. Therefore, the di-
ematical model of an isotropic laminate has the isotropic stiffneagensionless mathematical model has the advantages of not only
matrix [A], the null coupling stiffness matrB], and the isotropic qsing the complete investigation of physical phenomenon and me-
bending stiffness matrikD]. Ishikawa and Cho{i10] used three cpanical behavior about general types of real composite materials
physical models to examine the in-plane thermal expansion Cogfyt a5 evaluating the values of the physical param@er, the
ficients and thermal bending coefficients of fabric compositeg,oygh-thickness thermal expansion coefficigios the specific
Miller [11] indicated that the thermal expansion coefficients f pes of real composite materials.
laminates can be obtained from invariant lamina properties. Ye Intuitively, if ply orientations are random, it would expect an
et al.[12] reported that the mean values of the through-thickneggytropic laminate. Therefore, an analytical formulation for the
through-thickness coefficient of thermal expansion of an isotropic
laminate based on the hygrothermal-elastic lamination theory can

1To whom correspondence should be addressed. . . : . . .
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF be derived. The detailed derivation of this formulation can be

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- found in[12]. )

CHANICS. Manuscript received by the ASME Applied Mechanics Division, January In order to study the physical phenomenon about the effect of
3, 2001; final revision, June 23, 2001. Associate Editor: A. K. Mal. Discussion on thfifferent transverse modult, and E; on the through-thickness
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depanmerﬁ,@rmal expansion coefficientazz of the Composite laminates,

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi o .
be accepted until four months after final publication of the paper itself in the ASM oth the case oE,=Ej; and the case OE,# E; are considered

JOURNAL OF APPLIED MECHANICS. and the dimensionless mathematical model is used.
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The composite laminates made of plies with different transverseThe results from the analysis of this dimensionless mathemati-
moduli will display various characteristics and values of theal model will provide general guidelines for designing the values
through-thickness thermal expansion coefficieats It shows of the through-thickness thermal expansion coefficient of the com-
that in the case dE;=E, with the fixed values of the rest param-posite laminates to fit various environmental conditions in engi-
eters(such asGq,, v31, a1, ... etc) the values ofw, decrease neering applications.
along with the increase of the values . But, in the case of
E,+#E; with the fixed values of the other parametéssich as

Gy, va1, a1, ... etc), the values ofy, increase along with the References
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increase of the values @, ichael d Ni ite Airf il
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; ; From Invariant Lamina Properties,” Fibre Sci. Techndi3, pp. 397-409.
E,#Es, with the fixed values of the other parametéssch as [12] Yeh, H.-L., and Yeh, H.-Y., 2000, “The Variation in Through-Thickness Hy-

_Glz: va, @q, ... etc), the values ok, increase along with the grothermal Expansion Coefficients of Laminate Composites,” J. Compos.
increase of the values &,. Mater., 34, No. 14, pp. 1200-1215.
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Robust Adaptive Neural
Estimation of Restoring Forces
in Nonlinear Structures

The availability of methods for on-line estimation and identification of structures is cru-
cial for the monitoring and active control of time-varying nonlinear structural systems.
Adaptive estimation approaches that have recently appeared in the literature for on-line
estimation and identification of hysteretic systems under arbitrary dynamic environments
are in general model based. In these approaches, it is assumed that the unknown restoring
forces are modeled by nonlinear differential equations (which can represent general non-
linear characteristics, including hysteretic phenomena). The adaptive methods estimate
the parameters of the nonlinear differential equations on line. Adaptation of the param-
eters is done by comparing the prediction of the assumed model to the response measure-
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ment, and using the prediction error to change the system parameters. In this paper, a new
methodology is presented which is not model based. The new approach solves the problem
of estimating/identifying the restoring forces without assuming any model of the restoring
forces dynamics, and without postulating any structure on the form of the underlying
nonlinear dynamics. The new approach uses the Volterra/Wiener neural networks
(VWNN) which are capable of learning input/output nonlinear dynamics, in combination
with adaptive filtering and estimation techniques. Simulations and experimental results
from a steel structure and from a reinforced-concrete structure illustrate the power and
efficiency of the proposed methofiDOI: 10.1115/1.1408614

techniques is that they can model time-varying behavior, such as
structural deterioration which is often observed in civil structures
1.1 Motivation. Developing robust adaptive strategies foguring the course of strong ground excitation.
the control of structure@ncluding real-world civil structureshas Although adaptive identification schemes have been investi-
been a topic of recent intere§tl]). The modeling and identifica- gated with this in mind[25,26)), the work was limited to identi-
tion of nonlinear hysteretic systems are problems widely encouying certain classes of nonlinearities. Also the aforementioned
tered in the structural dynamlcs field. Nonlinear hyStereth behagpproaches impose the assumption that the restoring forces are
ior is commonly seen in structures experiencing strong earthquakgailable for measurement. In this paper, the authors apply an
excitation, in aerospace structures incorporating joints, and &daptive artificial neural network identification technique, which
various micro-mechanics problems. Noteworthy studies of thign cope with a much broader family of unknown nonlinear re-
problem are reported in the works of Caugh@y, Jenningd3],  sponse behaviors and does not assume that the restoring forces are
Iwan [4], Bouc[5], lwan and Lute$6], Masri[7], Wen[8], Masri  available from measurements.
and Caughey?9], Baber and Werj10], Spanog11], Toussi and ] ] o
Yao[12], Andronikou and Beke}13], Spencer and Bergmat4], 1.2 Scope. With the above discussion in mind, the authors
Vinogradov and Pivovarofl5], Iwan and CifuentefL6], Jayaku- have developed an efficient identification algorithm for handling
mar and Beck[17], Peng and Iwar{18], Yar and Hammond general structural systems inco_rporating severe nonlin_ea_rities, in-
[19,20, Roberts and Spand@1], Masri et al.[22], Loh and cluding elements with time-varying hysteretic characteristics. Sec-
Chung[23], Benedettini et al[24], Chassiakos et g25,26], Sato tion 2 provides some background of adaptive estimation tech-
and Qi[27], and most recently Smyth et 428]. niques and formulates the problem so that the proposed neural

The motivation for exploring adaptive techniques in the contefstimator can be applied to general structural systems using only
cceleration measurements; Section 3 presents an application of

of structural control comes from the recognition that since stru%e ronosed method to a simulated structural model incorporatin
tures behave nonlinearly when excited by strong motions, tII1e prop P 9

. . ) : . hysteretic elements; Section 4 presents experimental identification
implementation of conventional fixed controller strategies mayg s from two representative systems; and Section 5 discusses
prove to be naive. Often, the governing response properties oglyq evaluates the performance of the method presented herein.
exhibit themselves for the first time when subjected to strong

shaking. As a result of this, control strategies should incorporate

flexible adaptive identification schemes which can quickly capture

and emulate the (_assential response signature of a structural sy%emProblem Formulation and Neural Estimators
and react accordingly. Of course, another key feature of adaptive
2.1 General Problem Formulation. Consider the generic
complex structural system shown in Fig. 1. Assume that the struc-
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF  ture can be subjected to support excitatiogs,- - Xo, force
0

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- o ,
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 4excitationsf ,- - :fnlx and control forcesi; - sUn, - Thef’s and

2000; final revision, June 8, 2001. Associate Editor: J. W. Ju. Discussion on the paglge u's are applied directly to nodes on the structure at which
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APPLIED MECHANICS. The internodal connections often behave nonlinearly, and their
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for this system may be written as follows:
MXi+ri—ro—rz=fi+uy
MyXo+Tro—r4+rg=Ffr+ Uy )
M3X3+r3—r5+r,=fz+Uus.

In this case, using the notation of EG), the 7rj; are defined by
Xo; the following matrix(which is of order 36 or n;xXng)

Fig. 1 General structural system, with discrete response mea-
surement locations. The system can experience force excita- +1 -1 -1 0 0 0
tion, and multiple support motions. r 0 +1 0 -1 0 1 3)

=
0 o +1 +1 -1 O
restoring force is denoted ag(t) for the jth restoring element,

j=1;--,ne. The reduced-order equation of motion for each ac- |, general, the internodatlement relative displacements for
tive degree-of-freedom may be written as each elemen}, can be written together in a vector form as the
) product of a connectivity matrixC and a vector containing the
miX;+ E 7Tirjrj:fi+ui i=1:-,ny (1) displacements of the active degrees-of-freedom and the support
=1 ne motions:
wheren, is the number of interconnections which could be made
between active degrees-of-freedom- 1,n; and support degrees-

of-freedom 1,-- ,ny. In the case of a completely general structure X11

shown in Fig. 1,ng=(Nng+n4)(ng+n,—1)/2. The numbersni’j X12
are defined as follows: :

(+1 if the jth restoring element applies a positive Xin,

— _ T: T

force to theith degree-of-freedom q=Cx=[(7")": (7] y (4)

. . . . 01

. 0 if the jth restoring element applies no X032
i force to theith degree-of-freedom :

—1 if the jth restoring element applies a negative Xon0

L force to thei th degree-of-freedom

Typically, from inspection of the topology of a structure, onavhereq is the vector of internodal relative displacements, of order
may quickly disregard certain interconnections between nodal IR.x 1), C is of order figx(n,+ng)), (7")7 is of order @,
cations. If, for example, the discrete three-degree-of-freedorn,), and (%) is of order fi,X ny). For example, for the three-
model shown in Fig. 2 is considered, then the equation of motialegree-of-freedom problem in Fig. 2 this would be

s
f, U f Uy f3 ]
r r, l—> 7 |—> "
1 2 4 5 X
Lﬁ'.. *u X X3 L2y
x
ey,

Fig. 2 Three-degree-of-freedom structural system, with discrete response measure-
ment locations. The system can experience force excitation, and multiple support
motions.
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1 0O | -1 0 o0 2.2.1 Filtered Error for Excitation Scenario 1.For the most
a1 X11 general case, defined above as Excitation Scenario 1, there will be
d, -1 1 o [ o 0 0 X12 two kinds of filtered error expressions: one which comes from the
Us -1 0 1 ] o0 0 Of| xy3 relative motion between two active degrees-of-freedom and the
wl™l o -1 1 0 o oll x second which comes from the relative motion between an active
4 | o1 degree-of-freedom and a support degree-of-freedom. In general,
ds 0 0O -1 | ©O 0 1| Xez differentiatingys ; , with respect to time and taking into account
X ;
Js - 0 1 0| 0o -1 0- 03 Egs.(1), (6), and(9), results in
©) Vei=Vit+ «Yi
The objective of any control design is to select the control = C,%+xkC;X (10)

forcesu; such that some measures of displacements and velocities ) )
are kept small. In this study, two commonly encountered excita- If C; only combines active degrees-of-freedom gayandx,y,

tion scenarios will be considered: then the derivative of the filtered error becomes
« Excitation Scenario 1: Multiple independent support mo- Y¢,i= CitXa + Cigkai+ K(Cji Xy + CircXay)
tions with or without multiple force excitation. c c
+ Excitation Scenario 2:  Single support motion with or with- = alr f u) + = (— a4 fetuy)
out multiple force excitation(Note: this could be all supports m, My

moving in unison, or could also be all supports fixed. — . .
9 PP + K (Cji X1+ CigX 1)

For Scenario 1, which is the most general situation, the quanti-

. L . , ., . C: C:
ties to k_Je mlnlmlzec_llabeled generically as theg's andyj_s) will =—"(u|)+ _Ik(uk)+Xi (11)
be the internodal displacements and their velocities, i.e.qflse m, my

andq;’s. For this case then

where| and m are, respectively, thith andkth row of matrix

yj=Cjx=q 6 7', andy; denotes theombined effeabf restoring forces and the
. L ®) direct force excitations in Eq11), defined as
¥j=Cix=q;
G Ci
whereC; is just thejth row of C. Notice also thay is of ordern, Xi :—"(— mr+f)+ —'k(— il 4 1) +x(Ciy Xy + CirXqy) -
in this case. m My

For Scenario 2, which involves a single support motion excita- (12)
tion, one can simplify the previous situation and minimize thgy settinga;£1/m,, and b;£1/m, for notational convenience,
displacements and velocities relative to {lsengle support mo- Eg. (11) can be rewritten as follows:
tion, in other words )

Yi,i=Xi+ai(ciu) +bj(cicuy). (13)
Yi=X—Xot (7) The termsa;, b;, and y; are the unknown terms needed to be
¥i=%;—Xo1.- estimated. _ _
) ) . . . If, however,C; combines an active degree-of-freedom say
Notice thaty is only of ordern; in this case. Notice also that, 54 a support degree-of-freedom say, then, following the

because the support motions are all the samexgman be used came procedure as above, the derivative of the filtered error
to determine the relative motions. For the special case when omes

supports are fixedi.e., xq;=0), Eq.(7) simplifies to minimizing -
the absolute displacements and velocities of the active degrees-of- Yt ;=Cj; Xy + CiyXox+ (CijX1) + CixXok)
freedom:

Cii o — .
Yi=X; ®) :m—ll(—7T|rr+f|+U|)+CikX0k+K(Ci|X1l+CikX0k)
i =2+ (14)
As it can be seen from the system equations in (Eg.knowl- m Xi

edge of the effect of the restoring forcesis essential for the
development of efficient control algorithms. In many realistic sit
ations, the restoring forces are not available for measurement. In Cil o )

this case, we need an appropriate estimation/identification algo- Xi=m(—7r,’r+f|)+cik5'<0k+ K(Cjy Xy + CikXok) (15)
rithm for estimating these forces. The purpose of this paper is to :

develop and evaluate such an algorithm. and

 where now

2.2 Filtered Error. Let us define the filtered error; as Vii=xitai(cyuy). (16)

follows: . N .
2.2.2 Filtered Error for Excitation Scenario 2.The expres-

Yi.i=Yit kY (9) sion for the filtered error in the case of uniform support motion is
simpler than that in the more general Excitation Scenario 1 which
involved the possibility of multiple support motions. Taking Eg.
(7), differentiating with respect to time, and following the same
procedure as before, yields

wherek is a positive design constant. It can be shaj\@9]) that
the definition(9) has two properties(i) if y; ;=0 then they;,y;
converge to zero exponentially; afig) if |y; ;| <C for some posi-
tive constantC, theny;,y; converge exponentially to the sets

Iyi):lyi(t)|s1kCh and {y;(t):]yi(t)|<2C} respectively. In Vii=Yit Ky

other words, if the filtered erroy; ; is small and bounded by a .

constantC, theny; ,y; converge to a residual set whose radius is = (X —Xo2) + 1 (X —Xo1)

proportional toC and inversely proportional to the design constant 1

k. Thus, instead of designing control algorithms to kegpy; =— (=@ r+f+u) — X+ x(X —Xo1)
small, they can be designed to keep the filtered eyyersmall. m,
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1 Linear MIMO Filter Neural Network
= (U —— £ ——

H(s) W7e(-)
=ai(u)+xi an Fig. 3 Block diagram of the Volterra Wiener neural network
wherea;£1/m,, and (VWNN)
1 r . -, . .
Xi:ﬂ(_7T|r+fl)_X01+K(Xi_X01)- (18)

. . Assuming that measurements of the accelerations are available
2.3 Neural Estimators. The restoring forces; may possess a the support locations and at the active degrees-of-freedom, the
nonlinear hysteretic characteristics. In general, the dynamics \?\fNNN input ¢ is chosen ag=[%, u%,]". Using the approxima-
the restoring forces can be described by means of nonlinear dif, yegyits of Kosmatopould81], it can be shown that the un-
ferential equations of the form known termy; can be approximated by a VWNN. More precisely,
Fi=0)(r Xy, X1, U X0, %) J=1,... ¢ (19) if the x; and vectorst;, u, andX, are bounded and the dimen-
. sions of the vectorg and ¢ are large, then there exists a vector
wherer, u, x;, andx, are the restoring force vector, control forcesych that
vector, active degree-of-freedom and support motion vectors re-
spectively, andQ; is a nonlinear continuous function, capable of Xi(D)=67d(&)+ vi(t). (23)

capturing nonlinear hysteretic effects. Many different models for . .
the functionQ; have been proposed in the literature. As an e /ector 6; contains the same values as the neural network weight

ample, in Chassiakos et 426], an augmented Bouc-Wen modelMmatrix W, where the weights have been conca@enated into a single
([30]) was used: vector _for ease o_f de\_/e!opment. The tenft) is the so called
“modeling error,” i.e., it is a measure of how closely the repre-
t s n T ;
_ , 3 , n—-1 . n sentation 6/ ¢(&) can approximate the unknown tergy. The
rj=kogj+cg;+daj— jo(l/ﬂ)[V(ﬁ)|qJ'||rj| rj—yar;|"]dt modeling error satisfies the following: the magnitudevpis in-
(20) versely proportional to the dimensions of the vectdend ¢. In
other words, the modeling error can be made arbitrarily small by
whereg; is the relative displacement of elemgnt increasing the dimensions of the vectgrand ¢.
In Smyth et al[28] the parameter clusteks c, d, (1/7)v8 and Equation(23) can be rewritten using the most general form of
(L vy (which determine the nonlinear and hysteretic charactey; from Eq. (13) as follows:
istics of the restoring forgevere estimated by an on-line adaptive
estimation technique. In this paper, however, no particular model Vii= 607 d(&)+ vi+a;(cyu)) +bi(Ciuy). (24)
will be assumed for the functio@; , but rather it will be consid- ) . A A
ered to be anunknown function, whose effect needs to belf We now define the variable, =c;u;, and ¢, ;=ciUx, we
estimated. can rewrite Eq(24) into the following compact form:
Since the restoring forces as well as the function®; are c o7
assumed unknown, we negg to estimate their effect on the system Yii= 07 it aidaiTbidoitvi. (25)
dynamics in Eq(1). Instead of estimating each of the restoringrhus, we have transformed the relative motion dynamics into the
forcesr; we will estimate theicombined effedn Eqgs.(11), (14),  form of Eq. (25), where the filtered error velocities are written as
or (17), i.e., we will estimate the terny;. We do so, since in |inear combinations of unknown constant parameters and known
many cases it is very difficult, if possible at all, to estimate thgonlinear functions plus a modeling error tenm. Recall also,
effect of each of the restoring forces and unknown signals, bgrat theb; ¢, ; term occurs only for some filtered error terms in the
cause the number of unknowrteestoring forces and unknown Scenario 1 formulation. This term can be omitted for other cases.
signalg is larger than the number of equations in EGsl), (14), Since system accelerations are easily available for direct mea-
or (17). surement, we can assume that velocity and displacement estimates
The main challenge in designing adaptive algorithms for estre also available through integration. Equati28) is in the stan-
mating the unknown terms in E¢13) is the time-varying term dard parameter estimation form, and will be used directly in the
xi» Which depends nonlinearly and dynamically on the vectogsstimation procedure. The case where system displacements are
X1, X1, U, Xg, Xg. This unknown nonlinear time-varying terfy  measured rather than accelerations, can be treated in a similar
will be estimated using Volterra/Wiener neural netwof8VNN)  manner usingz=[x, ux,]" as the input vector, and performing

and their approximation properties established in Kosmatopoulgsme additional signal processing to obtain an estimation equation
[31]. The VWNN consists of a linear multi-input multi-outputin, the form of Eq.(25).

(MIMO) stable dynamical system connected in cascade with a
linear-in-the-weights neural network, as shown in Fig. 3. 2.4 Adaptive Law and Its Properties. Although different
The dynamics of the linear MIMO system are given as followgparameter estimation algorithms exist that can be used for the
estimation of#;, a;, andb;, we will use a normalized gradient
E=H(s)¢ (21)  adaptive law with projectioif29,32—34). There are two reasons
for this choice:(1) Such an adaptive law keeps the parameter
estimates bounded regardless of the boundedness properties of the
signalsx;, ¢i, ¢ai, ¢p;, on the one hand, an@®) it can be
appropriately designed so that the estimateagf 1/m; and b;
=1/my are always positive, on the other. The property of the
n=W7¢(&) (22) adaptive law to keep the estimate af=1/m and b;=1/m al-

) . ways positive is very crucial for the design of active control algo-
wherez is the output of the neural networW/ denotes the matrix rjihnms. The adaptive law is summarized as follows:

of the synaptic weights of the neural netwogkis the output of Egiimation Model

the linear filter in Eq.(21), and ¢ is a vector of the nonlinear

activation functions of the neural network. A detailed description 2= 07+ 8y + Dby (26)
of linear-in-the-weights neural networks and VWNN’s is given in boorT A e

the Appendices. Adaptive Laws

where{ is the input vector to the VWNNE¢ is the output of the

linear MIMO system, andH () is a stable transfer function matrix
(here,s denotes the Laplace opergtofhe linear-in-the-weights

neural network is described as follows:
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Y€ i it |6]<M @
3 x,,

: or if |B|=M and (ye ;) 6<0
i= “ o~
0i 0|T . r
|——— ] vei¢; otherwise 3
076,
(27
r'}’eiﬁba,i if 0p1<&<d, @D X,
. or if &=7, and (yeid,i)@<0
5 — o . 28
& or if &=27, and (ye¢ai)"8=0 (28)
L0 otherwise Ty
((Veidoi if Sp<bi<dpy
. or if bj=8,, and (ye ¢y, ;)D;<0
bi= - A| b2 (’)’ |¢b,|) AI (29) @D x
or if bj=5y; and (ye ¢y ;) b;=0 (IN—L.
L O otherwise
Normalized Estimation Error 1
€=(z—2)I\?
, , xOl
N2=1+ @7+ 2, + dh, (30) N

wherez; is the estimate oz =y¢;, and 0, &, b, are the esti- Fig. 4 Three-degree-of-freedom base excited structural sys-
mates of¢;, a;, andb;, respectively, andy, M, & are design tem, with discrete response measurement locations

positive constants. Parametgis the adaptive gainM is a large

positive constant bounding; such that| 6;|<M; and 8,;, J.5,

Sp1, Opp are positive design constantsounds fora; and b;),

such thatd,; <a;=1/m;< 8y, and 6y <bj=1/m<6y,;. denote the estimate of the filtered errgy;. Then, the error
The adaptive law in Eqs(26)—(30) guarantees the following €r=Ys;—¥si converges to a residual set whose radius is propor-
properties: tional to the magnitude; .

It should be noted that the linearly parameterized model in Eq.
(26) can be filtered on both sides of the equation yieldmand
¢’s which are filtered versions afand the¢'s. This was done in
Smyth et al.[28] to remove measurement noise before applying
the adaptive law.

1 The estimate®, , &, b; remain bounded, provided thay,
<&i(0)< 842, 8,1 <b;(0)<8y,, and|§;(0)|<M.
2 The normalized estimation errat converges to a residual
set whose radius is proportional to the magnitugle
3 Let %26,¢; denote the estimate of;. Then the error
exéxi—)‘(i converges to a residual set whose radius is pro-
portional to the magnitude; . o )
4 The errors 3 Application to a Nonlinear Structure
eaéai¢a,i—é1i¢aiz(a,~—é,~)ci,u| The proposed approach was tested through simulations on the
: (3 b : A P
N N . ase-excited three-degree-of-freedom chain-like model as in Fig.
€,=D; by, —bidpi=(b; —bj)c;uy 4. This basic model can be thought of as a discrete approximation
converge to residual sets whose radii are proportional to the maj-a three-story building subjected to ground excitation. The base
nitudev; . acceleration is chosen to be a band-limited random signal. The
5 Let simulation model contains nonlinear hysteretic elements whose
characteristics are considered unknown. The simulation model is
)7fiéJ‘[f(i(T)+éi(7)¢ai(7)+6i(7)¢bi(T)]dT based on the following system of differential equatiéassuming
" Jo ' ' that no control forces are applied; i.e;=0).

(ug—rz)/mg
Ag(X13=X12) +C3((Uz—T3)/Mg— (Up+T 3= T2)/My) +3d3( X3~ X12) *(X13— X1)
— Ba|X13— X2 [r3|"@1rg+ ga(Xys— X1p)|r5"®
%1 s - (U2_+r3_r2)im2 o
o =] Ax(Xap—Xa) F Co((UpFT3—ro)/my—(Ug+ 15— 11)/mMy) 4+ 3da(X1— X11) “(Xq2— X11) (32)
= BolX1o— Xqq| 15| "@1r 5+ go(Xqo— X19) | ro| @
: N s, -
A1(X11=Xo1) +C1((Uy 12— 11)/My—Xop) + 3d1 (X113~ Xo1) “(X11— Xo1)
= Ba|Xq3— Xog [ 4| @21 1+ 91 (Xq3— Xo) [ 4|"®
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whereA;, B;, ¢;, d;, gi, ng are constant parameters that goverestimator parameters. The VWNN parameters used for training, as

the hysteretic behavior of the restoring forces. well as the constants used in the adaptive law are presented in
Assuming that acceleration measurements are available, thiedle 1 wheré , is the identity matrix of dimensior, k=7 is the
simulation experiments were performed: dimension of the vector. Note also that the value of=0, in

Case 1 Using a wideband random signal as the base excitatR§er words the derivative of the “filtered errofivhich is being
Xoy(t), the system was simulated for 40 seconds. The neural egfiodeled will simply consist of system response accelerations.
mator was also running for the entire 40-second duration. TH&IS situation exists for a case where one is soley performing
network weights were allowed to adapt during this period. Th@odel identification, and not simultaneously applying control
purpose of this experiment is to simulate and test the adaptati®fices to keep the filtered error small. This is done simply because
method, and obtain the weights of the neural network that wilhe emphasis of this paper is on the identification algorithm and
approximate the unknown system. performance. For a simultaneous control application a typical

Case 2 The same wideband random base excitation as in Cag@lue of x might be 1.
was used, however, now the on-line adaptation is off. The weightsFigure 9 presents the results from simulation Case 2. Compar-
of the neural network are fixed to the values obtained in Caseing the time history plots of Fig. 9 with those of Fig. 5, it can be
The purpose of this simulation is to validate the obtained neurg¢en that the neural network tracks the unknown forces from time
model. t=0. This is of course expected, since adaptation is now off, i.e.,

Case 3 While the neural network is still fixed to the valuethere are no transient adaptation effects, and the weights have
obtained in Case 1, a different base excitation is now used. Thiseady converged to their optimal values from simulation Case 1.
simulation further validates the obtained neural model. If the Figure 10 presents plots the of time-histories of the restoring
VWNN is indeed a good approximator of the unknown systerdorces compared with their estimates from simulation Case 3.
dynamics, then it should perform well even in the case when théow the adaptation is off, and the neural network weights are
system is excited by a completely new random input. fixed to their optimal values from simulation Case 1. Although the

Figure 5 plots the restoring forcésolid curvé and their esti- Pase excitation is different than that of simulation Case 1, it is

mates(dashed curvesproduced by the neural estimator for simuS€en that the neural network approximates the unknown system
lation Case 1. Similarly Fig. 6 plots the accelerati¢sslid curvg ~ dynamics very well. o
and their estimateashed curvesproduced by the neural esti- In Table 2, we present the RMS of the estimation error for the
mator for simulation Case 1. The neural network weights are irforee simulation runs Case 1-3. As expected, simulation Case 1
tially set to small random values. Although the adaptation is d#ives a higher RMS error, due to the initial adaptation transients.
from timet=0, it is seen from the figures that it takes about 13he RMS errors for simulations Case 2 and Case 3 are one order
secondga few response cyclgor the network weights to adapt of magnitude smaller than those of Case 1, since the weights have
and to estimate the restoring forces exactly. Figure 7 presefgw converged to their optimal values.
corresponding phase plane plots. The actual restoring fokeiess ~ The same “experiment” was repeated by increasing the adap-
subplot$ and their estimategright subplot$ are plotted against tive gainy from 0.1 to 0.9. Figure 11 plots the restoring forces
the relative “interstory” displacements for the last 20 seconds d@olid curve and their estimateglashed curvésproduced by the
the simulation run, corresponding to Case 1. Only the last 2@ural estimator during training and Fig. 12 plots the restoring
seconds of the simulation are shown for purposes of readabilftyrces(solid curve and their estimate@ashed curvesproduced
(the initial transient effects of the adaptation are not plotted)herdy the neural estimator after training.

Figure 8 plots the time-history of some representative neural The value of the adaptive gaitearning rat¢ y has a consider-
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Fig. 5 Time-history of actual (solid curve ) and estimated (dashed curve ) restor-
ing forces when adaptation is on
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Fig. 6 Time-history of actual (solid curve ) and estimated (dashed curve ) accel-

erations when adaptation is on

able effect on the learning properties of the neural estimator. Thech an improvement in the transient behavior is that the neural
plots in Figs. 11 and 12 are the same plots as those of simulatiestimator for the larger adaptive gain case has poorer estimation
(1), with the exception that the learning rate has now been ioapabilities after training is off. It is worth noting that, in many

creased toy=0.9, as opposed te=0.1 for simulation(1). A

control applications, fast estimation error convergence during ad-

comparison between Figs. 5, 9 and Figs. 11, 12 reveals that #gation (training) is more important than good estimation after

increase of the adaptive gain has the effect of reducing the tirttee training phase. In those cases a larger adaptive gain is sug-
that the neural estimator needs to accurately predict the restorgested. It is also noted that, although theoretically the estimation
forces from about 15 to 5 seconds during training. The tradeoff ferror convergence can be made arbitrarily fast by increasing the
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sus relative displacements when adaptation is on
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adaptive gain, in practice there is an upper bound to the adaptive

Table 2 RMS of Estimation Error gain, since ify is too large, then the estimation algorithm becomes

Training Mode RMS error Numerically unstable.

Case 1: Training On 0.0260 4 Experimental Results

Case 2: Training Off 0.0066 . . . . . .

Case 3: Training Off, Diff. Exc. 0.0029 In this section, identification results using experimental data

from two highly nonlinear hysteretic single-degree-of-freedom
structures are presented. It is shown that our approach is success-
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Fig. 11 Time-history of actual (solid curve ) and estimated (dashed curve ) restor-
ing forces when adaptation is on, y=0.9
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Table 3 Neural Network Parameters Used for the Concrete and
the Steel Structures

“< 0
A(s) (1S3 ... s
H(s _ Lk el
(s) A(s)A7()| Where A(s) STI0T
W7 (&) a second-order HONN was us€®6])
a (see Appendix B 10
M 10P
a1+ Oaz AN dp1, Spp 0.1, 1000
Y 0.1

even though the restoring force incorporates features associated
with highly nonlinear behavior exhibited by hysteretic as well as
dead-space type nonlinearities.

4.2 Steel Structure. Experimental tests were also con-
ducted by means of a full-scale structural steel subassembly
(made of ASTM A36 steg] consisting of a W16X40 wide flange
beam framing into an 11-inch square box column. Because the
behavior of the column wall has an important effect on the overall
behavior of the connection, an axial load was applied to the col-
umn to simulate the dead and live load in an actual building col-
umn. Hydraulic actuators were used to impose the vertical loads
as well as the induced moment at the connection. The applied tip
loads and beam displacements were monitored by suitable force
and displacement sensors. Experimental measurements were later
processed to extract the value of the applied moment and the

fully applied to the unknown nonlinear hysteretic structures. Thgrresponding joint rotation, which were subsequently used to de-
data come from a concrete structure and a steel structure. In beghop the hysteretic characteristics of the connection.

cases a VWNN is used whose parameters are summarized in TablEigures 15 and 16 compare the actaleasureyl restoring

3. Since only a limited number of data is available in both casderce with its estimated values at the first training episode, and
the simulation policy was as follows: 50 training iterations werafter training is completed. Notice that the plotted nonlinear re-
performed, where at the beginning of each iteration the weighstoring force clearly exhibits degrading hysteretic properties. Note

from the end of the previous iteration were used wherés the
identity matrix of dimensionk, k=2 is the dimension of the
vector (.

4.1 Concrete Structure. The concrete specimen was a one

also that the estimation procedure is capable of accurately track-
ing this time varying nonlinear force.

5 Discussion

third scale model of a reinforced concrete, multistory frame joint As has been discussed throughout this paper, and as can be seen
prototype. Details of the test article and a photograph of the fafsem the very control-oriented formulation presented, the princi-
ricated specimen and test apparatus are available in the workpaf application for this estimation technique is in the area of adap-

Masri et al.[35]. The concrete specimen was tested by means o

tige control of nonlinear time-varying structural systems. Its iden-

servo-hydraulic device which imposed a prescribed dynamic mtification and estimation performance has been demonstrated to be

tion at the specimen boundary.

Figure 13 plots the actual concrete restoring fawmid curve
and its estimatédashed curveversus time(upper subplotand
versus the displacemeflower subplot during the first iteration.

rather accurate, even during the first training cycle whereano
priori model is assumed. In its present form the approach is some-
what computationally heavy for applications requiring estimates
to be computed within with very small time step sizes. This is

Figure 14 plots the actual and estimated restoring forces after gimply because of the large size of the neural network, and pro-

training is finished(in 15 iterations. It is seen that the VWNN

gressively enhanced speeds of computation will soon alleviate this

approximates very accurately the characteristics of the structupeoblem. It is important to note, that through this gradient-based
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Fig. 13 Concrete structure: restoring forces and their estimates during the first
training iteration

adaptive scheme, no matrix inversion is required; rather only m@- Conclusions

tiplication and addition operations are called for on reasonably I L N . .

large matrices. In addition, it is hoped that, through further re- The avallabll_lty of estlmatlonllderltlfl_catlon _technlqugs is cru-
search and experience, better physical insight can be gainecCi@l for the on-line control and monitoring of time-varying struc-
order to streamline the network Comp|exity required to model cet,ural SyStemS. The eXiSting adaptive estimation/identification tech-
tain nonlinearities. This in turn would greatly speed up computaiques suffer from two drawbacks: they assume tfit the

tion and model convergence. restoring forces applied to the system’s elements are available for

Restoring Force and its Estimale |ARer Training)
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Fig. 14 Concrete structure: restoring forces and their estimates after training

890 / Vol. 68, NOVEMBER 2001 Transactions of the ASME
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Fig. 15 Steel structure: restoring forces and their estimates during the first train-
ing iteration

measurement and th&2) the differential equation driving these proach uses appropriately adaptive filtering and estimation tech-
restoring forces can be parameterized as a linear combinationngfues and also makes use of the \olterra/Wiener neural network
unknown constant parameters and known nonlinear terms. In ttN8VNN) which is capable of learning input/output nonlinear dy-

paper, a new methodology is presented which completely overamical behaviors.

comes the above two problems. Specifically, a new approach isSimulations performed on a three-story building model under
presented that solves the problem of estimating/identifying tlearthquake excitation, as well as processing of experimental mea-
restoring forces without assuming that the restoring forces asarements from a reinforced-concrete structure as well as a steel
available for measurement, or imposing any restrictions on ts&ructure, verified the efficiency of the proposed technique and

nature of structure of the restoring forces dynamics. The new agemonstrated its utility.
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Fig. 16 Steel structure: restoring forces and their estimates after training
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roperty:

2) For any stable transfer functioR(s), positive realwmay
and e>0, there exists a positive integrand anN-dimensional
real vectora such that

Appendix A N
Linear-in-the-Weights Neural Networks. Neural networks sup P(jw)—z aihi(jo)| <e.
are known to possess powerful approximation capabilities; works ©0e[0,0mad i=1

by many authorgsee[36] and the references therginave shown An example of a family of transfer functiors(s) that satisfy the

that various neural network models are capable of approximati - - o) —
either functions or dynamical systems to any desired degree B(gg )F??rlt/y(p(i?)i Ijvhg:gp il'sagup%;ﬁivgﬂgggrﬂlzggﬁétéég_(p

accuracy. The focus of this paper is on linear-in-the-weights _neﬁ-_l_he dynamics of the dynamic linear module are described by
ral networks. In general, such neural networks are mathematlcatl ) S
e following set of equations:

described by

n=W7$(§) (A1) & i=hi(s)§
gik ..... i1~i:hik(s)§ik,1 il,i’

iell,...ngtng], iy, ... iq

whereé e R" denotes the input vector; e R™ denotes the output,

We R™L denotes the synaptic matrix of the neural network and e[1,...N], ke{1,... M}

$:R"—R" is a nonlinear vector function aégressor termsvith

the integerL denoting the number of regressor terms. Various (B1)

neural network models belong to the class of EAf). For ex-  where é2[u;, ... Un Y1, ... Yo ]"- Let &gy be defined as

ample, high-order neural networks, radial basis function networkg,|ows: ‘

neural network with shifted sigmoidals and adaptive fuzzy sys-

tems have been shown to belong to the class of neural networks of Enym =[§ik

Eq. (Al). For more details on linear-in-the-weights neural net-

works the reader is referred to Kosmatopoulos ef38]. e{l,... N}, ke{l,... M} (B2)
For the readers that are not familiar with the linear-in-thg-; ﬁM denote the dimension of the vecty .

weights neural networks but are familiar with the multilayer neu- 1o vectoréy v should be thought as a signal carrying infor-

ral networks(MNNs), they should picture a linear-in-the-weight : : : .
neural network as a MNN with one input layer with as mar?{/natlon about the past history of the input signal veetor

neurons as the number of inputs, a hidden layer consisting ofThe Static Neural Network Module The static neural network
many neurons and one output layer with as many neurons as thedule consists of a linear-in-the-weights neural network that sat-
number of outputs. The activation functions in the input and ouisfies property(P1) and is described by the following equation:
put layers are linealidentity) mappings while the activation func- o

tions in the hidden layer could be a variety of different nonlinear 7=Wd(&nm) (B3)

functions such as the product of the inputs, a radial basis functi%ereg c mﬁm denotes the input vector to the neural network
etc. N.M ’

- m
An important property that the many neural network models <5:fe?§XL denotes the output yector 9f the neural netwow,
the form in Eq. A1) satisfy is that e X" denotes the synaptic matrix of the neural network,

(P1) Neural networks belonging to the family described in Eq¢: RNM—9R" is a nonlinear vector function eégressor termsind
(A1) are said to beniversal approximatorsf for every continu- the integerL denotes the number of regressor terms.

ous functiony: R"—MRM, >0, and compact sggC R" there is an
integerL and a matrixW* such that the neural network with

il ie{lcongtng, i iy
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Plastic Forming Processes
o.oman | Through Rotating Conical Dies’

G. Davidi
. Drawing and extrusion of single-phase and multilayered tubes through rotating conical
D. Lior dies is investigated within the framework of continuum plasticity. Large strain perfectly
plastic J, flow theory models constitutive behavior along with a radial-helical flow pat-
Faculty of Aerospace Engineering, tern. The governing system for a single-layer process is reduced to three coupled nonlin-
Technion, ear ordinary differential equations. An approximate solution is developed for long and
Haifa 32000, Isragl tapered working zones with low wall friction. That solution is used to simulate the field

within each layer in composite tube forming. Exact relations are derived for the n-layered
tube and it is shown that wall rotation can considerably reduce the required working
loads. [DOI: 10.1115/1.1382597

Dedicated to Professor Dietmar Gross on the occasion of his 60th birthday

1 Introduction tion is briefly discussed, emphasizing the beneficial effects of wall

Multilayered composite tubes offer a combination of propertiqrﬁoéaet:ovci'ﬂ? gggafct)t':ﬂ?; (\]/l\?aI\IN ith the study {B]) for the full cyl-

sqltab_le for a wide range of industrial a_ppllcatlons. By comparison 1,4 single-layer approximate solution is employed, in Section
with single phase tubes there are obvious advantages of the Comz, model the behavior of each phase in a composite multilay-
posites in the practice of nuclear and chemical engineering, &q tube. Interfacial continuity requirements along with surface
well as in cryogenic applications and in aerospace engineeringundary data lead to a closed-form solution in terms of averaged
Composite bi-layered cylinders are frequently encountered in hemposite properties. The expressions for working stresses are on
transfer tubegaluminum on stegland in electrical wiregscopper equal footing with the single layer analysis and reveal again the
on steel. advantage of wall rotation. The paper concludes with a brief dis-
Existing studies on drawing and extrusion of composite tubesission of the solution for composite tubes, and a few examples
through conical dies center almost exclusively on the upper bouatk given to illustrate the main findings.
estimation of the working load 1,2]) with stationary dies. Dur-
ban[3] applied the Shield4] radial flow solution to study ana-
lytically drawing and extrusion of composite tubes. His analysis Single-Phase Formulation
valid for long and tapered working zones with small WaF ) ) ) ) ]
friction—has been extended recently Hplcaraz, Martinez-  With the notation of Fig. 1 we consider a steady forming pro-
Espanola, and Gil-Sevillan®]) to include large cone angles.  ©€SS of (_:omblned_ Q)_(trus_lon/drf_awmg of tubes through rotating
In this work we examine plastic forming processes of Compogpn'ca_I dies. '_Fhe |n|t_|al dlmen_slons of th? tube_ are reducec_i by
ite multilayered tubes through rotating conical di@s opposing enforcing an irreversible plastic deformation within the conical

Co > ) A . working zone. The conical walls of the die have a common apex
directions. That rotation is expected to divert the resisting radl% and %he flow pattern within the working zone is assumed topbe

shear stresses along the walls, thus reducing the required workgm)ga”y symmetric with two velocity components; a radial compo-

conical dies are by Brovmd] for perfectly plastic wires, and by yransmitted by circumferential friction along the walls.
Durban[7] for power-law viscous tubes. Thus, with a fixed Eulerian triadef,e,,e,), located at the

We begin, in the next section, with the formulation of the gowgirtual apex 0, we have the velocity vector of the working zone
erning field equations for a single-phase tube. Material behavior is

modeled by the rigid/perfectly plastl; flow theory and the flow vV=Uue +we, (2.1)
pattern is assumed to be radially helical. The resulting systaghere both components;, w) depend o and 6.
consists of three coupled nonlinear ordinary differential equationsConstitutive behavior is modeled by tldg flow theory, with

with the shear stresses transverse profiles as unknowns. rigid/perfectly plastic response,
Next, in section 3, we concentrate on the important case of long
and tapered dies with small wall friction. A consistent approxima- /2 D
. ) - . : S=1\/zY (2.2)
tion of the field equations admits, under these assumptions, an 3 D--D

exact analytical solution for the stresses and velocities. This solu- ) . o
whereS is the stress deviato¥—the uniaxial yield stress and

denotes the Eulerian strain rate tensor. It is now a matter of ease to
IThis work is based in part on a Master of Science thesis submitted to the TeMETTfy that material incompressibility, implied bi2.2), dictates

nion by G. Davidi. the radial velocity component
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- f(0)
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 13, Uu=———— (2.3)

2000; final revision, Feb. 20, 2001. Associate Editor M.-J. Pindera. Discussion on the

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmen ; : ; ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and thgﬁ.ere f(0) IS -an .unknow.n function ob and the negative sign
be accepted until four months after final publication of the paper itself in the ASME‘dwa’[eS converging conical flow. Furthermore, to have both ve-

JOURNAL OF APPLIED MECHANICS. locity components on equal footingnd hence all strain rate com-
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1 1
Sippt ;EW+ ;(32r¢+ 23,500t0)=0  (2.%)

wherep=r/r,,is the nondimensionalized radial coordinate and a
comma followed by an index denotes partial differentiation. Now,
inserting the deviatorsX,, — 2. ,,) and%,,, from (2.6), in (2.%)
and integrating ovep gives

' 2

3= (i) + b cotf— —

V3A V3A A

where G(#6) is yet another unknown function af. Combining
(2.10 with the first of (2.6) we obtain an expression faX,,

which is substituted in(2.%) together withX,, from (2.6). It
follows that transverse equilibrium is maintained if

Inp+G(6) (2.10)

Fig. 1 Drawing or extrusion of tubes through rotating conical
dies. The working zone is bounded by the radii rin=<r<ry, and

wall angles <f0<a,. ' '
9 a; ar B B 2
—| +|—|cotd——| =0 (2.11)
V3A V3A A
ponents with an identical algebraic weight of the radial c:oordif’}nd
nate we take a circumferential velocity profile of the form 1\" V38
G’:(— +—. (2.12)
_99 +Qor sing 2.4 : :
W=z of SIN (2.4) Finally, we substitute the shear stres3gg and= ,,, from (2.6) in

the circumferential equilibrium equatio(®.9c). This gives the

whereg(6) is again an unknown function @ and(), denotes a gquation

reference rigid-body rate of rotation. Accordingly, notice that th
second term in(2.4) does not induce any strain rates within the Y2 Y2 V1
working zone and, in fact, we may proceed wifl,=0. The (X N C0t0—3(x) =0. (2.13)
choice (2.3—(2.4) generates, by2.2), a deviatoric stress field

which is independent aof, thus facilitating an analytical solution To sum up, the radial-helical flow patte(®.3)—(2.4) can be sus-

’

+2

along the lines of[4,8,9)). tained by the perfectly plastic soli@.2) provided the Egs.
The strain rate components that follow frof®.3—(2.4) are, (2.11)—(2.13 are satisfied. That system of three equations is for
with an obvious notation, three unknown function¢f, g, G) and can be solved along with
appropriate boundary data. In fact, £8.12 can be treated sepa-
:Z_f . f rately for functionG, which leaves us with the two Eq&2.11)
ErrTNT F06T 00T T3 and(2.13 for f andg. While no attempt is made in this study to
handle the fully nonlinear system, it is worth mentioning that it is
P 39 _g’'—gcotd , 5 Possible to extract a compatibility equation from relati¢®s) in
Ero~ F srqﬁ* F Sflqﬁi 2r3 ( . ) the form
where the prime indicates differentiation with respectia fur- v1+(2v3B—cot)y;—3vy,=0. (2.14)

ther substitution 0f2.5) in (2.2) results in the deviatoric StressesEquations(Z.lJ) and(2.13—(2.14, along with the algebraic con-

1 nection (2.8), may be regarded as a system of fourth order for
Er,—EM:K with 2 4p=3 44 (B,7v1,7v2) which appears to be simpler than the original formu-
lation.
A similar analysis for power low viscous solids has been pre-
S = B Sp=— e zwzﬁ (2.6) sented by Durbafi7], and an earlier version for perfectly plastic
V3A V3A V3A solids was given in[6]). In the absence of rotatiorg&0) we

where all stress components have been nondimensionalized wigover from(2.11~(2.12, with A=y1+ 5% the radial flow

respect toY (i.e., X, =0 /Y, 2y=0,/Y, etc., oy; being the equations first obtained by Shield].
true stress componentand

_ vt _v3g  _v3(g'—gcotd) 3 Approximate Solution for Long and Tapered Dies
6f T2t 72 6f @D Wi icti
With Small Wall Friction
A=\1+p%+ y?1+ yzﬁ_ (2.8) Radial flow simulation of extrusion and drawing through coni-

S . . cal dies is by now well establishg®urban[3,9]) for long and
The deviatorics ir{2.6) are now independent ofand contain two  tapered dies with small wall friction. In such configurations it is
unknown functiong(f, g) of 6. The relative strength of the threepermissible to neglect the contributions of wall friction and of

shear strain rates is expressedgnd (y1,72). entry/exit transition zones to plastic yielding within the working
It remains to consider the equations of equilibriimertia ef- zone. That analysis is of asymptotic value and is practically valid
fects are neglected for low-speed procepsg@gen by for long dies with small cone angles. In fact, initial experimental

1 1 work, which has accompanied this study, shows t_hat pure extru-
St —Spot S [2(3, =S40 +3,pc0t0]=0 (2.97) Sion processes are bounded by the effect of blocking beyond cer-
Top P tain levels of taperness.
Proceeding along similar lines in the present study we consider
S 4 1 S+ §E -0 (2.) now the restricted case where all three shear stresses
rop 0065, =re ‘ (019,0,4,044) are much smaller than the yield stre¥s This
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assumption is usually met in reality since the forming processesAt this stage we have completed the construction of the first-
are conducted with well lubricated dies. Thus, in nondimensioorder approximate solution of the field equations. The normal

alized notation

32, 32,35,<1 (3.1)
implying, via (2.6) and(2.8), that
B% 73, v5<1 and A~1 (3.2)

it follows that the three governing equatiorig,11) and (2.13—-
(2.14), simplify to

(B'+Bcoth)'=0 (3.3)
y1— y1c0td—3y,=0. (3.5)

Put differently, the systen8.3)—(3.5) is the consistent first-order
linearization of the original nonlinear system, as all coupled ter

have been dropped out.
Equation(3.3) admits the exact solution

B
B=—Acoto+ —

sin@ (3.6)

stresses i3.11) vary aslnp in the radial direction but are trans-
versally uniform, while shear stresses vary only in éhdirection
and contribute very little to the yield stre¥sLikewise the radial
velocity profile(3.12) is uniform in the transverse direction while
the circumferential component’s profi{8.13 varies through the
thickness of the working zone.

The five integration constants that appear in the stre&2%
are determined from five boundary conditions, see algprij). To
begin with, we assume that no end couples are applied on the
working piece. Thus, at the entry and at the exit

27 [ ap
f f S, 403 si? 0dogp=0
0 ay

where entry/exit surfaces are assumed to be spherical. However,
ith %, from (3.11) being independent of we find that the

torsional moment3.14) vanishes over any spherical cross section

along the working zone. Substitutir, , from (3.11) in (3.14),

and using the small angle approximation &6, gives

(3.14)

2 2, 2
ay=5 (ajta3).

5 (3.15)

where (A, B) are integration constants. Likewise, the couple ) o . ]
(3.4—(3.5) can be integrated exactly in terms of Legendre fundVext, we consider the twisting momemi* applied by the
tions. However, for small cone angles we may use the approxinfgtesse 4, along the wallsf= a1, @, . These moments, of equal

tion cotf~6~* and write the solution of3.4)—(3.5—with coté

magnitude, but in opposite directions in view (8£14), are given

replaced bys~*—in terms of modified Bessel functions. Expand®Y

ing (3.6) and the Bessel solution fory(,y,) in powers of 6,
results in the consistent small-angle approximation

a2
B= —\/35( 0— 75) (3.7)
_3\/3 6 1
="M (a_ﬁ_ 5) (3.8)
V3 1
V2= M(?) (3.9)

where §,a4,M,q)) are integration constants. Constantsd)
are of course related to constais B) in (3.6). Solutions(3.7)—
(3.9 can also be derived asymptotically fro8.3—(3.5), as 6
becomes small, by a standard expansion in powers of
Within that framework, the solution .12 is simply

G=D, (3.10)

D being a constant, and the stresses follow fi@10 and(2.6)
as

Sp==2(1+8)Inp+D I;=3,,=3,-1

s a? 3 (1 0 1 (1
=0 0- ) 2emgMiGT 2] FemaMiE)
(3.11)

In the expression foE,, we have assumed that<1, as will be
confirmed later.

To find the radial velocity profile we integrate the first(@f7)
in the form

f(9)=U exp2v3[BdO)~U(1+2v3[Bdo)~U (3.12)

since bothB and § are assumed to be small. Hddds a constant,
which scales the transversally uniform radial velodi#y3). The
circumferential velocity profileg(#) in (2.4) follows from the
second of(2.7) along with(3.8) and(3.12), viz

3

9(6)=5M (3.13)

01U
2 3Y

g
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27 (i
M*:J f ot sin? odrdg at 6=ay,a,. (3.16)
0 r

out
Within our approximationsoy,, of (3.11) is independent of,
sin6~46, and(3.16 gives

wee T
3

which is in fact independent of wall angle. Observing that

(r2=r3)YM (3.17)

an
3 3
_(rin_rout):v

3 (3.18)

is exactly one quarter of the spherical volume included between
the spheres=r;, andr=r,,, we find that the integration con-
stantM is related to the twisting momend* by

M*

M=y (3.19)

Two additional boundary conditions are imposed by surface fric-

tion data along the rotating conical walls. We assume that the
resultant surface shear stress is a fraction of the effective shear
stressY/v3, namely

1

2 2 1 5
E,B+29d,=§m2 at 6=a, (3.20)
wherem; (i =1,2) are the surface friction factors, with =1 for a
perfectly rough wall andn;=0 for a smooth wall. Here we as-
sume that both friction factors are much smaller than unity. From
(3.11), (3.7), and(3.9), we find that condition$3.20 become

B+ y3=m}

at 0= aq

B2+ yi=m5 at f=a, (3.21)

or, accounting for the appropriate signs of the shear stresses,

Transactions of the ASME
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Fig. 2 Effect of walls rotation on reducing working loads. Curves are for m,;=m,=0.05 and a,=7deg.

Here M,.,=8.62-10"%. Values of cone angles ratio  a,/a, are indicated over the curves. In the absence of
rotation z=0 and &=4,. The theoretical limit for ~a,/a;—1 is given by 1—Z22.

, X102+ X,a? has been found that wall rotation can reduce significantly the
v working loads and thus improve the efficiency of the forming
1772 process.
Xy + X, Consider for example the case of pure extrusigr-(—1) with
6= —F——> (3.22) the extrusion pressure, frof8.11) and(3.25),
ay— ag
with P=2(1+6)Inpg (3.26)

2a,

Xy= \/(mlal)z—(l)z Xo= \/(m2a2>2— .
V3 2a; V3 1 - > VEE
(3.23) _ \/ @) (M \/
° a%—ai{ (vz) 5 *

M )2 with the nonuniformity parametes, given by(3.22—(3.23,
The expression fong confirms the earlier assumption {8.11)

m2a2 2 ( M )2
V3 2a5) |
that a§< 1. Notice that for our flow patter,, is positive atd (3.27
= a, but negative ab= a;, while X, is positive on both walls. | the absence of frictiofm; =m,=0 andM =0) &vanishes and

The last integration constatD in (3.11) is determined by (326 becomes the classical uniform extrusion pressure
specifying the entry/exit loading ratio. For long and tapered dies

we can identify the extrusion pressuPeand the drawing tension

T (both nondimensionalized with respectYpwith the values of Pu=2Inpo.

Db i oo 5 g G S8 valls, Wi =0 we recover fon(22) the knour
Y- p 9 y 9 {le extrusion formuld[8])

loading parameter

(3.28)

T-P
K N

with =1 in pure drawing P=0) andn= —1 in pure extrusion

(T=0). Thus, with3,(p=1)=T andX, (p=pe) = — P, we find Rotation of the walls will divert the direction of the resisting shear

from the first of(3.11) and definition(3.24) that stresses along the walls and consequently reduce the required
entry/exit working loads. That phenomenon is apparent from

D=(1+7)(1+d)Inp (3.25) (3.27) in pure extrusion as increasing the twisting momenivill
which concludes the solution. make & smaller. Notice that counter-rotating directions of the two
A detailed analysis of this first-order solution has been made pnical walls minimizes torsional distortion of the product which

Davidi [10], and to some extent earlier by Durbpf] for power may occur when only one die is rotating. Interestingly, there is a

low viscous tubes. Brovmal6] reports on the case of a perfectlymaximum value permissible favl given by the lower of the two

plastic solid cone being extruded through a single conical die.duantities (2‘/’§)miozi2 i=1,2. In passing, it is worth mentioning

(3.24) mya;+Mpa;

So=8(M=0)= . 3.29
o= aM=0)= T (3.29)
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that since the highest value bf is of O(ma?) it is quite obvious
that the shear stresses (B.11) are much smaller thaly as we
have assumed at the outset.

Consider the particular case of equal frictiom;E my,=m)
with M .,=(2W3)ma?. Figure 2 displays the relative reduction
in the working load by showing the ratio (15)/(1+ &) versus
z=M/M . for different cone angles ratia,/«, . All curves are
for m;=m,=m=0.05 anda,=7deg. It can be seen from Fig. 2
that wall rotation can substantially lower the working loads. Thi
beneficial effect of rotation is more pronounced for thinner tube
In fact, at the theoretical limit of a vanishing thin tube, with

.-
//
/

aylay—1, we have from(3.27) that
5—8\1—2> with So=mIV3(a,— a;)
implying that

(3.30)

1+ 5 1 Ay 1
1+ 50 - z as aq o
An interesting observation that follows frof8.27) is that the
effect of wall friction can be eliminated altogether when

mya’=m,as (3.31)

since in that configuration the twisting momeit= M ., Will
make § vanish by(3.27), as all surface friction in(3.20 is then
activated by= 4, .

The level of helicity induced by wall rotation can be assess

by considering the velocity ratio

g 3 o 1

by (3.12—(3.13. With «, given in(3.15 we find that¢ attains its
maximum atf= a4, namely

2 2
A~ ay

3M
Emax= 27“1

For walls with equal friction,m;=m,=m, we have M
=(2W3)ma? and

(3.33)

a2§+ ozlz '

Ay~ ay
fmax:‘/jmal 21,2
axTa;

(3.34)

indicating a very low rate of rotation by comparison with the

radial velocity component.

While conical surface shear stress&s (,2 4,4) are bounded by
friction conditions(3.20), it is interesting to note that the spherica

surface shear componebt,, is much smaller thai.,,, regard-

less of wall friction. This is evident frort8.11) upon constructing
the ratio|2r¢/2 0¢| and observing that its highest value, attaineﬁ:'e‘l,[1

at 0=ay, is 3ay(as—al)l2(aj+af). Put differently, |3, |

Fig. 3 Notation for composite multilayered tube drawing or
extrusion. The composite consists of n layers (i=1,2,...,n)
with the ith layer bounded by the cones «,_;<60=a«;. All layers
have common entry /exit radii (r=r;,,ro;) and wall angles are
ay,a,.

The velocity profiles follow from(3.35 as
4 %

f=U gzéMU? (3.37)
é'|aducing the surface helicity
4M
gmax:ﬁ- (3.38)

The wall friction conditiong?+ y53=m? at #=a gives

\/ m |2 ( M \? \/ m\2 (3 2
=N\3a) 1223 = Vl|vaa) ~|géme (:39)
implying a maximum moment ¥l ,,,=2A3 ma?, which is simi-
lar to the tube resul3.27), where § vanishes.

The linear profile of radial shear streX¥s, in (3.36), and the
reduction iné due to surface helicity iri3.39, compare qualita-

tively with the numerical results if{6]) for small die angles and
low friction.

4 Multilayered Composite Tubes

In this section we examine forming processes of multilayered
tubes(Fig. 3) through rotating conical dies. The composite con-

Isists ofn phases, labeled by=1,2, ... n, all having identical
e

ntry/exit radii(p=pg,1, respectively. The walls have angles,
and «,,, while a representative layéris bounded by the cones
< f#<q;. The common virtual apex is at 0 and we assume
the flow field and stresses within each layer are given with
sufficient accuracy by the approximate soluti@rl1) and(3.12—

=1/2¢ in view of (3.32, which to some extent justifies the aver(3.13. The analysis follows an earlier study by Durbig] for

aged condition imposed i(8.14).
For the full cylinder (G< < «) the solution of Eq(3.3)—(3.5

has to be bounded along the a¥is-0. The consistent first-order

approximation(3.7)—(3.9) is then replaced by

2V 9 V3 @

B=-V350 m=—73"M— y,=5M— (335

where constanM is related to the twisting momei*, applied

drawing and extrusion of composite sheets, wires, and tubes
through stationary dies.

Denoting the yield stress of each layer Wyit is instructive to
define at the outset the volume-averaged yield stress of the entire
composite by

Yau=

1 n
21 (aP—a? )Y, (4.1)

7_ 2
A~ Qg i

over the outer surfacé= a, by relation(3.19 as obtained from gj5ng with the relative yield stress of each phase

integral (3.16 at #=«. The end couple$3.14 are now active,

and the shear stresses within the working zone are

0 1 6

2
2(9:60 Erqg:__M? 294,:5'\/'?

3

with the normal components given §$.11).

(3.36)
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Now, we rewrite the single-phase stress figddL1) for each layer,

with all stress components nondimensionalized with respect to
Yau

yi= i=12,...n. (4.2)
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35, =—2yi(1+8)Inp+D;

=—2yi(1+5)Inp+D;—y;

v g_a_‘z"i Si :E ‘M. l_i i :yi_Mi
ro= YiOi P ro 4y| il ai,i 0 202'
(4.3)

There are five integration constan (D; ,a; ,ay ;,M;) in each

of then layers. Also, the associated velocity field in each phase is

U; 3 6 1\U,
Ui:—r—z WiZEMi a—ﬁl—gr—z (44)
not accounting for the rigid-body rate of rotation (B.4). The
velocity field adds one more integration constabt)( at each
layer.

Radial velocity continuity at the interfaces implies immediately

the common radial component
Ui=U i=12,...n (4.5)

while circumferential velocity continuity gives then{1l) equa-
tions

Mii—M; M, M;
T U =12, . p-1. (4.6)
a; Xyiv1 X

Interfacial continuity of normal stresses results in two sets of

equations
Yit10i+17Y10i=—(Yit1~Yi) (4.79)
Dit1—=Di=Yyis1—Yi (4.70)
both fori=1,2,... n—1.

n

. @ 2| PO
— E'rr(p=po)j 6d o= yi(1+6)
n oi= aj_q n Ol—l
n
X(a?2—a? ) E (4.15)
Now, it is deduced frorT(4.7) that
yi(1+68)=1+6 and D;—y;=D-1 (4.16)

where 8 and D are universal constants common for all layers.
Observing the two simple identities

21 Yi(1+ 8)(a?—a? )= (1+5)(a?—ad)

Z (a?—a? )=D(a’—a?) (4.17)

we find that the working stress¢$.14—(4.15 become
T=D P=2(1+6)Inpy—D. (4.18)

A further substitution of(4.18 in the loading condition(3.24)
results in the connection

D=(1+75)(1+d8)Inpy (4.19)

which is identical with the single-phase relatih25, but with
(D, ) replaced by the averaged constarils §). Both constants
are volume averages @; andy;d;, respectively, as is evident
from (4.16).

We still have to implement the friction conditioKi3.20), which

Stress continuity conditions are completed with the requiremei@ the composite tube read

that bothX.,, andX. ,;,, pass smoothly at each interface. This gives,

respectively,
y|+15|+1as|+1 y|5a5| (Yi+10i+1— y|5)a (4-8)
y|+1M|+1 yl (4-9)
again fori=1,2,... n—1.

However, the external twist relatiof8.16), applied here a®t
=agy and 0= a,,, gives the simple result

M*=VY,yM;, i=1n, (4.10)

V being one quarter of the included spherical voluf3el8).
Combining (4.10 with (4.9 we find that constantd; are now
completely determined bgwith M replacingM in (3.19)

M*
VY., =M i=

Vanishing of end torsion—written i(8.14) for a single phase—
takes here the form

Som]! |

Applying the small angle approximation, integrati@12), using
(4.11) and arranging finally gives

Turning to the loading conditiof3.24) we find, by (4.3), that
end loads for multilayered tubes are given by

YiMi = 1,2,...n. (4.11)

03
0— —) de=0.

) (4.12)

4
-
— (4.13)

) Z(Qﬁ—ag).

akl

n

2 n ) @i
T=—-2 3h(p=1 f 0do=
aﬁ_ag; rr(p ) @ )
—af_y) (4.14)

Journal of Applied Mechanics

1
(2}9)2"‘(2 ¢)2 §( 1m0)2 at 0=aq
n\2 n \2_ 1
(B +(2hy)°= (yn W’ at 6=a, (4.20)
where (ny,m,) are the friction factors along the external walls.

Substituting the shear stresses frofmd) in (4.20 we obtain the

equations
2 — \2
&) _(i) 5

_y151(01(2)_ 015,1) = \/(

V3 2aq
(4.21)
\/ YnMphap ’ ( M)Z_
vadnaf-aty= /| 7| || <% @22)

with due account of the shear stresses directions. The definitions
of X;,X5 in (4.21)—(4.22 may be compared with those ¥f , X,

in (3.23 for the single phase tube. Equatio@s21)—(4.22 are
conveniently combined to give the relation
y1d1a5— (X1 +Xy).

Yn 5na’§,n_ yl5la§,1: Yn 5naﬁ -

(4.23)

However, the l.h.s. 0f4.23 can be constructed differently by
summing up equation@.8) fromi=1 toi=n—1, namely
n-1

yn5na§,n_y151a§,1 E (Yiz10i11— y15)a

2_

=ap— ag— (Ynai—y1ap)
(4.24)
on account of the first of4.16). Thus, from(4.23—(4.24)
YnOn@h— Y1810~ (X+Xp) = af— af— (ynah—y1ad)
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Fig. 4 Variation of My, and 1+ 6(M=M,,,) with wall data. Optimal design
where =0 corresponds to the line of intersection of the M2 pyramid faces
where myady,=m,a?y,. Results are for composite multilayered tubes.

or, again with use 0f4.16), in a; 7, determines all other constandg; by (4.29. For future
Xt % use we shall just record here the expressiondfpy as
0= —5—, (4.25)
™ %o 1 1\w at—at
. . . = 2 i %
which may be compared witt.22. In the absence of rotation the M 1( o2 az) “ M.
expression fos agrees with that of[3]) for composite tubes. ki To/j=t !
Having the solution fors determines also constam, by a4_a471 j 1 1
(4.19, and in turn constantsd(,D;) are now known frorm(4.16) => (%) > Mi(—z— —)
for all layers. In fact, the working stressé.18 are now com- i=1 i i=1 4 g
pletely known, even without the solution for constamatg; and A g
ay;. In pure extrusion, for example, with=—1, we have the o i %i-1 12— o 4
Working stress 121 ajZ (an aO)- ( 30)
P=2(1+d)Inp, (4.26)

with 3 given by (4.25. 5 Discussion and Conclusions

Constantsa; are easily found fron{4.8) and (4.21). In fact, As in the single-phase process, wall rotation lowers the required
constantas ; is given by (4.20)—and similarly a5 , is given by working stresses in composite tube forming. Taking the pure ex-
(4.22—so0 if we sum up Eq(4.8) fromi=1 toi=j—1 the re- {rusion casé4.26 as an example we find frofd.25 and(4.21)—
sulting expression (4.22 that the value ob can be considerably reduced by applying
torsional momenM. That moment is bounded by the smaller of

i i
of Yau j)ag(&yl) (4.27) the quantities (2B)ymoas and (2#3)y,m,a?. Evidently, an

2 2 _
Yidjas—Y10105,= ]

"WYa Yav optimal design appears to be characterized by the relation
completely determines constants; . Here,YLv is the volume- ) )
averaged yield stress, over the firdayers, defined by Y1Moapg=YysMyay (5.1)
_ 1 ith M=M. ing 8 vani i -
i 2_ 2 _ with M =M o making § vanish. The extrusion pressure is then
Yay a,-zfaﬁzl (o —ai_y)Yi. (4-28)  given by the uniform process relatia8.28 with the averaged

. . . yield stress of the compositd.1). By comparison with3.31) we
The last integration constants that need to be determinedare fing that for composite tube¢5.1) provides more degrees-of-

of Egs.(4.6) and(4.13. This particular system is sufficient sincefreedom in improving the forming process by an appropriate
constantsvl; are given by(4.11). The solution procedure is simi- chojce ofy,; andy,,.

lar to the technique we have applied in finding constan{s. Figure 4 displays the variation of ., and of 1+ (M
Ig,ljlsr:gnttze.S}E,n:efr;Sngm'G) g;m,l =1 toi=j-1 gives each =Mpa) With wall data(values ofma?y/v3 on both boundarigs
ki k1 y as evaluated front4.25. The pyramid shape of ,, follows

M; M, ! 1 1 M; M, immediately from(4.21)—(4.22, when eitherX; or X, vanish,
—— 7 =—2, Mj| 52— ——|+—=——%. (4.29) with the optimal desigr(5.1) at the intersection of the pyramid
Akj k1 i=1 @i @iy ap &g ey

faces. The nonuniformity parametérvanishes along the optimal
A further substitution ofozk’,i2 from (4.29 in (4.13 leads to a design line(whereX;=X,=0) in Fig. 4 and increases monoto-
single equation for, ; . Solution of that equation, which is linear nously with each of the wall parametersg?y/v3). As expected,
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Fig. 5 Drawing stress T for mild steel (MS) tubes with fixed inner wall angle of ay="7deg
=~0.12 rad. Upper curve is for stationary dies. Lower curves are for rotating dies at M max - Also shown
is the influence of cladding of external surface with brass (Br) or with copper (Cu). Friction factors in
all cases are m=0.06 on both walls.

M max rfemains smallabout O(107%)), but the working stresses, (a?— ad)(a?—a?)

S ) : > i — —(i+1) _ i
scaled by (3 6), may increase considerably over the uniform aiopy(ai) = aﬁ_a(z) (Y2, "= Yg,)
value.
A specific example, shown in Fig. 5, illustrates the advantage of (a?— aé)YZ—(aﬁ— a,iZ)Yl
rotational forming for drawing through conical dies with inner + > Y av (5.3)

wall angle of ay=7deg=0.12rad and equal friction factors ®n™ %o

=0.06 on both walls. Results for a single phase tube, made phere v (1 js the volume-averaged yield stress of all layers
mild steel(MS) with a yield stress of 584.8 MPa, show the reducgom 11 ton, Thus, even in an optimal forming process, where
tion i dlraWIlrllg stre|s§, dut\a/\/’gohwall roltgtlcci)n a’gnzwix’ fgr vfarlous X;=X,=0, the jump in the relative averages of yield stress
external wall anglesa;. With a;= eg=0.21rad, for ex- —(iT1)_ i : : :

ample, wall rotation Iolvvers the clirawing stress by 11.5 perceégr%é IwithinY%rv\?s (ﬁgrli?r?;czeor?gnslsd?/\sgﬁf firlllez:];ty;?se é?t?gfeaces
g‘ilﬁg 2??&“ c;rl]tg:gs.UBer[:eecgl\;%Sdifr?g; tnrlztgﬂwggbfggs\,ﬂhyda complete nonlinear system of the governing equations is then

L . needed to investigate the forming process.

=355.6 MPa, or copp€iCu) with Y=277 MPa. The friction fac- L .

. _ We may conclude that wall rotation, in steady forming of com-
tors rtemaln tzhe/‘%am(i).O? on bothd_vf\;alls, tbet the Eoulngg_ry pi posites through conical dies, can considerably reduce the required
rameters fay/v3) are orcourse different for each cladding. orking loads as well as the normal pressure acting on the walls.
a1=12 deg we have with the brass cladding a reduction of 1

X . . ith a judicious choice of layers constituents, particularly the
percent in the drawing stress as compared to single-phase drawligh, i javers; it should be possible to control the process param-
without rotation. With copper cladding the reductlon'ﬁns 22'.5 eters and interfacial stresses. The potentially higher reductions
percent. In this example we have assumed that cladding thickngag e, "can he achieved through rotating dies call for a further
is extremely thin so that the average yield stress of the compos} ﬁdy of this forming pattern beyond the simplifying assumptions
equals that .Of mild steel. . . . employed in the present work.

The multilayered tube forming analysis presented here is 0
course within the framework of the basic assumptions of long and
tapered working zones and small wall friction. A further issue thﬂcknowledgment
should be examined here are the shear stresses induced by inte

facial jumps of yield stresses across adjacent layers. Consider oene 0(2 ulz(ItD.!D.)C\;]vis.h(esAto ackngwlletljzge.the supch)th tofftphg
example the radial componeb{, at 6~ e, , from (4.3 ydney Goldstein Chair in Aeronautical Engineering. Part of this

study was supported by the fund for the promotion of research at
the Technion.

: e Zi
ra(ai)zg\?a _Yi5i(ai_%)- (5.2)

av 1

References

) [1] Matin, M., and Blazynski, T. Z., 1981, “An Upper Bound Solution of the

Surely, the true stress componetjt, should be much smaller than Problem of Cold Plug Drawing of Trimetallic Implosively Prewelded Tube,” J.

the yield stressY;—so as to comply with our approximate Eng. Prod.5, pp. 33-39. ) ) _
t . K i [2] Szule, W., and Malinowski, Z., 1994, “Theoretical and Experimental Investi-

solution—and in pamCUIaUrﬁ(ai) should be smaller than both gation of the Multilayer Tube Drawing,” J. Mater. Process. Techrds,, pp.

Y; andY;, . To this end we rewrité¢5.2) as 347-352.

Journal of Applied Mechanics NOVEMBER 2001, Vol. 68 / 901



[3] Durban, D., 1984, “Drawing and Extrusion of Composite Sheets, Wires and [7] Durban, D., 1987, “Drawing of Viscoplastic Tubes Through Rotating Conical

Tubes,” Int. J. Solids Struct20, pp. 469—-666. Dies,” Computational Methods for Predicting Material Processing Defedts
[4] Shield, R. T., 1955, “Plastic Flow in a Converging Conical Channel,” J. Mech. Predeleanu, ed., Elsevier, New York, pp. 93-102.
Phys. Solids3, pp. 246—-258. [8] Durban, D., 1980, “Drawing of Tubes,” ASME J. Appl. Mechi6, pp. 763—

[5] Alcaraz, J. L., Martinez-Espanola, J. M., and Gil-Sevillano, J., 1996, “Ana- 740.
lytical Approach to the Stress Field in the Extrusion of Bimetallic Tubes,” Int. [9] Durban, D., 1983, “Radial Flow Simulation of Drawing and Extrusion of

J. Solids Struct.33, pp. 2075-2093. Rigid/Hardening Materials,” Int. J. Mech. Sc5, pp. 27-39.
[6] Brovman, J. M., 1987, “Stedy Forming Processes of Plastic Materials Wit 10] Davidi, G., 1999, “Plastic Forming Processes Through Rotating Conical
Their Rotation,” Int. J. Mech. Sci29, pp. 483-489. Dies,” M.Sc. research thesis, Technion, Haifa, Israel.

902 / Vol. 68, NOVEMBER 2001 Transactions of the ASME



Moment Lyapunov Exponent
n. srinamachenivaya | AN Stochastic Stability of Two

Department of Aeronautical and

Astronautical Engineering, co u p I ed OSCi I Iato rs D rive n bv

University of lllinois,
103 S. Wright Street, -
Urbana, IL 61801-2935 Real NOISB

H. J. Van Roessel In a recent paper an asymptotic approximation for the moment Lyapunov exporeht, g

of two coupled oscillators driven by a small intensity real noise was obtained. The utility
of that result is limited by the fact that it was obtained under the assumption that the
moment p is small, a limitation which precludes, for example, the determination of the
stability index. In this paper that limitation is removed and an asymptotic approximation
valid for arbitrary p is obtained. The results are applied to study the moment stability of
the stationary solutions of structural and mechanical systems subjected to stochastic
excitation. [DOI: 10.1115/1.1387021
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1 Introduction E+2001E+ wlE+gi(£0)=wW(D). )
In the study of stability of solutions of random dynamical sys- _
tems, the exponential growth rate Bix(t;Xo)||" is provided by In many problems of practical interest, tkg's are of the form
the moment Lyapunov exponent defined as
1 kij (&) =k;;T(&).
imTIog E|[x(t;%o)]|P,

9(p;Xo) =1 L .
t— This is the form we examine Sd) becomes

wherex(t;Xg) is the solution process of a linear random dynami-
cal system. Ifg(p;x,) <0, then, by definitionE|x(t;xy)||P—0 as . 2 : B S
t—o and this is referred to gsth moment stability. The connec- it i qi+2§wiQi+Z:l kijgif(£(t))=0, i,j=12. (3)
tion between moment stability and almost-sure stability for an
undamped linear oscillator under real noise excitation was estab—rpa aim of this paper is to study the moment behavior of two-
lished for the first time by Molanov[1]. These results were ex- f : ; :

tended for an arbitrarg-dimensional system by Arnol®] where degree-of-freedom systems given by ES). The small noise ex

ise lai £ th lation b | ansions of the moment Lyapunov exponent for this two-degree-
a concise formulation of the relation between aimost-sure samplegeedom system were obtained by Sri Namachchivaya ¢5hl.
stability andpth mean stability is presented. The complete set

| h led L ! Pbr small p. In this paper, these results are extended to obtain an
results on the so-called moment Lyapunov exponent, Iits properties , it representation of the moment Lyapunov exponent for

and generators is obtained in two consecutive papers by Amgitiie b As before we consider a real noise excitation with specific
et al.[3,4] for real and white noise situations, respectively. nfinitesimal generatoG. It is assumed thaG has an isolated
_Tge sys(tjems unoflefr c%nsmerat:jor} coSr‘13|sr: of p;r?metncally &fmple zero eigenvalue. In this paper, we have derived the genera-
cited two-degree-of-freedom models. Such models are encoyf:| () “whose principal eigenvalue is the moment Lyapunov
tered in the study of linear or nonlinear mechanical systems sulz,nent by two different procedures. The first method is based
jected to fluctuating loading or imposed displacements, as Shoyi 5y asymptotic expansion similar to that presented in Sri Nama-
in Section 5. Consider, for example, chchivaya et al[5] and the second method is based on stochastic

2

Vit 2lw1yr+ w2y +g1(y1,Y2) =w(t), averaging. Although it has been shown that moment Lyapunov
exponents are based on large deviation phenomena, the stochastic
Vot 2LwoY2+ 03yt Y202(Y1,Y2) =0, averaging scheme along with Girsanov and Feynman-Kac formu-

las yield the same result fdr(p) as the asymptotic method.
= ; X Section 2 describes the general theory of moment Lyapunov
procgsts). The Sta;b'“ty of th? soluu.qul:f(:]), ]}/2:0) IS OV~ exponents for linear systems with real noise. In Section 3 we
ermed by a set of variational equations of the form obtain the appropriate eigenvalue problem for the moment
2 Lyapunov exponent. A small noise expansion is constructed and
. ) . ~ B o ) S
b+ o’ Qi+2§wiQi+E ki(£(D))g;=0, i,j=12, (1) the moment Lyapunov exponent in terms of spectral densities is
=1 calculated in Section 3.1. In Section 3.2, the equation governing
with £(t) defined by t_he moment Lyapunov exponent is obtained by means of stocha_s-
tic averaging and some discussions on the validity of stochastic
—_— averaging in determining Lyapunov and moment Lyapunov expo-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF nents are given. An OrthOgonal gxpansmn for .the elg.envalue p.rob-
MECHANICAL ENGINEERSTor publication in the ASME QURNAL oF AppLiEDME-  1€M based on Galerkin method is presented in Section 4. Various
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 15cases of interest are obtained numerically based on this approxi-
2000; final revision, Feb. 26, 2001. Associate Editor: A. A. Ferri. Discussion on thgjgtion. In Section 5, these results are applied to study the
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme _ ; o i ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi gg(ural torsional Stat.)lhty of a narrow SImply suPported elastic
be accepted until four months after final publication of the paper itself in the ASME€@M under fluctuating end moments or a stochastic follower
JOURNAL OF APPLIED MECHANICS. force.

whereg;(0,0)=0, dg,/dy,(y1,0)# 0, andw(t) is a white noise
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2 Real Noise Case

This section provides a summary of essential results for mo-
ment Lyapunov exponents. It is included to give an outline of the
central ideas involved in the arguments. The reader is referredM@reovet g:R—R is convex and analytjagy(p)/p is increasing
Arnold et al.[3,4] for details of the theorems. The complete set 08(0)=0, g’(0)=X\, and the corresponding eigenfunction df)
equations required for calculating the moment Lyapunov expi non-negative. Furthermorg”(0) is the variance in the central

lim— Iog Ellx(t;x0)[P=9g(p).

t—oo

nents is also presented. limit theorem, i.e.
For the real noise case, consider
X=A(£(1)x, xeRY, @ J<Iog\|x(t Xo)| = At)—=AN(0g"(0))(t—) for any x,#0,

where V is the normal distribution and— denotes weak conver-
dE=Xo(§)dtt D, Xi(£)odW, éeM. gence

- Consider the operatdr(p) and its adjoinl.* (p). By Theorem
In order to ensure that there is a unique smooth and positite g(p) is an isolated simple eigenvalue af(p) with non-
invariant densityr on the compact manifold, assumeg(t) is negative eigenfunctions(p) such that||#(p)||=1. The adjoint
strongly elliptic in the sense that dibA(Xy, ... X;)(§) operatorL*(p) has an eigenfunction(p) corresponding tg(p)
=dimM for all £eM, where LA(Z) denotes the Lie algebra which is unique and has the propetty(p),v(p))=1, i.e.,
generated by the s& of vector fields. Introducing polar coordi-

nates inRY through the Khas’minskii transformation L(P)¢(P)=g(P)¥(P), (¥(p).¥(p))=1 VpeR. (5
. . 3 Moment Lyapunov Exponent for Coupled
s= HXH es’! and |x|eR Oscillators

Consider linear oscillatory systems described by equations of

gives the following equations of motion: motion of the form

2

t
X(t;Xo) || =1Xollex 7),s(7))d7}, . . .
” ( O)H ” 0” F{fOQ(f( ) ( )) ] Qi+wi2qi+282£wiQi+82L kijqj-f(§(t))=0, I,]:l,z, (6)
i=
s=h(&(1),s), where theq;’s are generalized coordinates; is theith natural
frequency, and:{ represents a small viscous damping coefficient.
It is assumed that the natural frequenciesraacommensurable
q(&(7),s(1)=s"A(&(r))s and h(&(t),s)=(A—ql)s. The stochastic terng(t) is a real-noise process on a smooth con-
) o qo1 nected Riemannian manifol (with or without boundarywith f
The pair §,s) together form a diffusion process dXP°"" 4 smooth nonconstant function defined n The associated in-
(obtained froms?~* by identifyings and —s) whose generator is finitesimal generator is assumed to have the form

given by N . N N
=2, il af. 2 2o <§>—§}2 (f)—f}

™

In order to make the problem tractab@ will be assumed to have

an isolated simple zero eigenvaluklence, the only solution of
Gu=0 isu=constant. It follows that the associated adjoint opera-
tor G* also has zero as a simple, isolated eigenvalue and the

where

L=G+h J
B Js’

where G= X+ 1/25_X? is the generator of written in Har-
mander form. For a fixede M, h(&,-) is a vector field on the
projective space. To avoid degenerate situationgfdahe follow-
ing ellipticity condition is imposed:

) J ) normalized invariant measutg £)d¢ satisfiesG* v (£) =0.
(H)dimLA Xo+h+ -, Xy, . ... ,Xr}(&&t)—dlm M-+d The almost-sure stability of the equilibrium staje=q=0 of
Eq. (6) is to be investigated. Using the transformatiap
V(&5 eMxXPITIXR, =Xoi_1, Q= wiXy, i=1,2, Eq.(6) may be represented by the

foIIowmg system of Stratonovich differential equations:
Combining the above results with the definition of moment

Lyapunov exponents yields x=Ax+f(&(t))BX, ®)
| | £ dé=p(dt+o(£)odW,
a(p; XO)_tm 0gE| ex q(g( 7).8(7))d7 whereA andB are 4x4 constant matrices given by
for peR, and fixedx,e RA{O}. 0 “’21 0 0
- -2 0 0
The following was proven by Arnold et dl3]: az| 1 e"fwy ,
THEOREM 1. Assume (H) 0 0 0 ;)
1 Le.t.)\:fopdflq(f,S)d,LL where u is the unique invariant 0 0 —w, —28%lw,
probability measure of£,s) on Mx P4~1. Then\ is the maximal
Lyapunov exponent for (4), i.e., fop*0 0 0 0 0
1 7k11/wl O 7k12/(1)1 0
lim— Iog||x(t Xo)|=\  almost-surely. B=¢ 0 0 0 ol )

t~>oc

2 For peR, let g(p) be the principal eigenvalue of(p)=L “kaloz 0 —kplw, 0O

+pg(&,s) acting on @M X P971). Then dp) is the pth moment 3.1 Asymptotic Results for Coupled Oscillators. Apply-
Lyapunov exponent for (4), i.e., fop* 0 ing the transformations
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X1=E€" COS¢h; COSH, X,= — €’ Sin¢h; COSH, L*(p)=L%p)+eL(p)+e3L%(p),

(10)
Xz=€’ CoS¢,SiNh, X,=—¢€’sing,sind, where
yields the following set of equations for the logarithm of the am- 2 9
plitude p, phase variablesd , ¢, ,0) and noise process Lo(p):G(g)Jrzl wia_d}+pqo(¢1’¢2'0'§):_.£o+pqo;
2 i= i
E W (b1, 02,0,8, 0=2, €191, 2,0,8), , 2 )
= i= 1rn) =<l _ 1 —
(11) LH(P)=5H($1,62,0.6) 55+ 2 hi(61,62,0.6) 5
2
. A 1 —.rl 1.
b= 2, ehl(d1,62,0.6), dé=p(Odt+a(HodW, TPA(b1 62, 6.H)=L4 PO
=
(12)
L2(p)=5%(b1,$2.0.6) - +E h2( by, b2,0,6)
where q0(¢17¢2!0l§)501 SO(¢11¢2101§)EOV hi°(¢l!¢2707§:) a9 (9(;5'
= w; and ) ) )
+pq (¢1!¢2!6!§)::[’ +pq .
a' (¢, b2,0,6)= f(é)[%( b1,b2)+Ac( by, b2)COS 20 In Sri Namachchivaya et dl5] use was made of the analyticity
of g(p) to Taylor expand inp. Each coefficient in the Taylor
+0s( 1, b2)sin 26], series was then further expandeckirWith this double expansion
1 ) ) in both ¢ and p an expression fog(p) valid to »(¢2p?) was
0o( @1, ¢2) = P11SiN 2¢p1 + P2y Sin 2¢5, obtained. However, the restriction to small valuegpdimits the
1 _ in 2. — in2 utility of that result, particularly with regard to the calculation of
0c( b1, ¢2) = P11SIN 21— P2, SiN 2655, the stability index as pointed out by Khasminskii and Moshchuk
1 T ain At T ain h— [6]. Here we remove the small restriction and consider an ex-
As(b1,¢2) =P21SiNG™—pasing”, pansion of the moment Lyapunov exponent in powers ofly:
s'(p1.02.0,6)= f(f)[so(dh,¢2)+Sl(¢11¢2)005219 9.(p)=0o(P) +&91(p) +°g,(p) + O(&?).

Lol in 20 It has been shown that such an expansion is asymptotic as in Sri
Ss( 1., ¢2)sin 26], Namachchivaya et g5], Khasminskii and Moshchulé], Arnold

1 —p- cindt —nt aind— et al.[7], and Pardoux and Wihstuf8]. Insertion of these expan-
S ,2)=Poy SiN sing ™, ; ' ) ;

ol b1, $2) =ParSING T = PaySinG sions into Eq.(5) leads to the following sequence of Poisson

So(B1,h2) =Py SiNd™ —pysing ™, equations:

sé<¢1,¢2>=pzzsin2¢2—pusin 241, (L) = Qo(P)) o =0; (13)
(L%(p)—go(P)) h1=01(P) ho— L (P) tho; (14)

(L%(p) —do(P)) #r2=02(P) o+ 91(P) ¢h1— L*(P) tho— Ll(p)(fi's)

hi(¢y,¢2,0,6)= f(f)[h Lo (#1) +hip (b1, do)tand],

h3(¢1,¢,0,6)= f(g [h2(0)(b2) +h3p) (b1, b2)cot ], _ _ _
3.1.1 The Solution t®(1). Sinceq®(¢,, ¢, ,6,£)=0, it fol-
1 _ lows from the definition ofy(p) thatgy(p)=0. Thus the operator
1+cos ,
10)(#1) = Pasl %) L%p) reduces tac® and Eq.(13) becomes

L%,=0.

Since the equations to be solved involve the differential operator

hi(o)(b1.b2)=P1ACOSH" +COSP ™),
h%(m( h2) = P2y 1+ C0s 2p,),

héw)(dbl,qﬁz): poi(cosgt +cose ), £° at each stage, the solution of the corresponding adjoint prob-
) 5 5 lem £% ¥ ,=0, along with periodic boundary condition,( ¢,
q (¢1,¢2,0,§):qo(¢1,¢z)+qc(¢1,¢z)cos20, +21,¢2,0,8)=Wo(by,py+2m,0,8)=Vo(b1,b,,0,8), is re-
quired. SinceG has an isolated simple zero eigenvalue, and the
Q2 b1, hy) = [51(1 COS 2p,) + 55(1—COS 2p) ], frequenciesw; and w, are noncommensurable it can be shown
(see[9]) that the solution is
1
G2( b1, b2) = — 5[ 51(1=C08 2p) — 5,(1—C05 24y)], Wy(0,6)= w,
S (1. b2, 0,€) =S b1, b2)SiN 26, where F is an arbitrary function. By a similar argument it follows
1 that o e ker(£%) ={C(#6):C is an arbitrary function o#}. There-
s§(¢1,¢2) = E[51(17005 2p1) — 8,(1—cos 2p,) ], fore ¥o=o(6), a function ofd which has yet to be determined.
) ] 3.1.2 The Solution t@(e). Inserting the above expression
hi'(¢;) = — & sin 2¢; . for i into Eq. (14) results in

In the above expressionsy=pa*Pizs ¢° =1t b2 O[04 =~y by ,0,) P+ [01(P)— PO by, b2 0.6) 1o,

={w; andp;;=kj; /w; . (16)
Since the processeg(, ¢,, 6,¢) do not depend op, the pro-

cesses ¢,,¢,,0,&) alone form a diffusive Markov process andThe eigenvaluay,(p) is obtained from the solvability condition.

the associated generator is given by Applying the solvability condition to the above equation yields
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=(q o+ sy, Wo)

:%ngmml,qsz,e;p>,v<§>f<0>>=0, (%)
where
Ry(¢1,¢2,0;p)=pLag( b1, b2) + el b1, h2)cOS 20
+0a( b1, $2)Sin 2601 o+ [S5( b1 b2)
+5L( ¢y, d,)COS 20

+55( 1, B2)sin 20]40( ),

(().(-))= f fj f (-)(--)d¢1ddrdédo.

The last equality in Eqg.(17) follows from the fact that
Ri(¢1,¢2,0;p) is periodic in ¢, and ¢,, and f(&) is a zero
mean process. In terms & (¢4, 2, 0;p), EqQ. (14) reduces to

1
5011/1:*Zf(f)R1(¢1y¢219§p)- (18)

The solutiony, of the above equation can be expressed in terms

of the Green’s functiomgy(¢,t; »,0) for the operatoG and can be
written as(see[5])

Ui( Py, b2,0,6p)

1 o0
7 fo K(&,7)R(P1+ w17, o+ w,7,0;p)dT.

(19)
3.1.3 The Solution t@)(s?).
Eq. (15) for ¢, becomes

LO%,=[92(p) —PU (b1, b2,0,8) 1ho—S* (b1, b2, 0,8) g

_£1¢1(¢11¢2161§;p)' (20)
The solvability condition for this equation is
(gz(p)‘l’o_pqzq’o_szl//(’)_ﬁl‘ﬁl,‘l’&:()- (21)

Making use of the correlation function df(¢) and the cosine
spectrum given, respectively, by

R(’T)Zj f(EK(&,m)dr S(w)=2Jx”R(T)COSw7'dT,
M 0

the solvability condition(21), after some calculation, reduces to

/2 1 ~ R
Jo [[gz(p)— PO~ 5 P?Q(O)] W o—[ () +pa(6)14i(6)

——02(9)¢(0)}f(9)d0 0, (22)

where

1
cot260— = A sin 20,

w(6)=0?(6) 7

R 1 .
un(6)= E(B—E+ 2A cos 26)sin 26,

1
Q(0)=0c?(6)+ EA cos 20+ D,

Q(0)=F +E cos 20— A co€ 24,

o?(09)=Acog 26+B cos 20+ C,
with the constants given by
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Employing the above results,

%IH

A= [ P21+ P12)°S(0 ™) + (P21~ P12 *S(w

|

B=3<p2 —p2)(S(0")+S(w))
16 21 12 1

2

- PES(2w)
i=1

1
C= 3_2[ (P21~ P12 ?S(@ ™)+ (P21+P12)?S(w ™)

|

1 1
= E(Al"‘ Ay)+ 8 P21P1AS(w™)

2

+2 piS(20)
i=1
—S(w7)),
1, 2
E= E{pns(zwl) ~P2,S(202)},
1 2 + 2 B
F=35] (P21t P12 "S(0 ") + (P21~ P12 "S(w ™)
2
+> pﬁS(Zwi)],
i=1

1, ,
A== 8+ gpiS2w), =12,

A:Al_Az,

Since Eq(22) must hold for arbitrary#(6), the bracketed quan-
tity must vanish identically. This leads to the following differential
equation forgg:

wt:wli wsy.

~ 1 R
L(p)dor=5 o B i + [l 6) + Pie( )10

N
+| pQUO)+ 5 PQ(6) |

=02(p) - (23)

We reiterate that Eq23) was derived without any restriction on
the size ofp. This equation along with appropriate boundary con-
ditions forms the eigenvalue problem for whigh(p) is the prin-
cipal eigenvalue. We note in passing that a Taylor series expansion
of the above equation ip allows us to recover the equations in
Sri Namachchivaya et d5]. Boundaries for the process are not
physical, thus it is not clear what boundary conditions one should
use to solve the eignenvalue problé28). However, our earlier
work ([5]) for small p suggests that the boundary behavior ffor
=0, which can be obtained by the Feller boundary classification,
would be appropriate for determining the moment Lyapunov ex-
ponentg(p).

The boundary conditions are determined by considering the ad-
joint equation withp=0:

~ 1 d? 5 d _
LX(W(6)):=7 4oz (0*(O)M(6) — - (u(HT(6)=0.  (24)
Appropriate boundary conditions fan(6) are based on the Feller
boundary classification. This can also be justified from transfor-
mation (10), or equivalently(28) that =0 implies a;=0, and
6=m/2 impliesa,=0. It is clear physically that unless the cou-
pling coefficientsp,, and p,; are both zero, it is not possible to

have a solution with eithea; or a, identically zero. Thusin(6)
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will not represent a point mass &0 or =x/2. Moreover, this where

assertion can also be justified by applying the Feller classification 0 0

based on scale and speed measures fam{l#® process. It can be 1 _ P P sinwt 4 bt
shown, as in Sri Namachchivaya and Van Roef8glthat =0 Fi@,é.0 2 &sin 20, 2 gj(sinfey t+ &)
and 6=m/2 are entrance boundaries. It is clear from Exf}) that

the probability current is given by +sin(w;t+¢;)), (31)
- 1d_ , 1 Pii Pij & . .
Ast:—M(a)m(ﬁ’HE@[U (0)m(6)]. (25) Gi(a,qﬁ,t):7(coszli>i+1)+?;aj(cos{wingbij)
|
The solution to the Fokker-Planck equation can be written as +coqwijt+ ¢y))), (32)
m(6)=m(6)[2AsS(6) +Cl, (26) F2(a,4,0)= wa(1-cos2b), of=w*w;, (33)
where the scale and speed measures are defined in term®)of ) ) .
ando(6) as Gi(a,p,t)=w;sin2d;, ¢jj=¢i* ;. (34)
02u(7) Here the noise proces§ w,t) is a stationary stochastic process
m(6)=[o?(0)s(6)] 1, s(0)=exp[—J de], with mean zero whose correlation functi®(r) decays suffi-

ciently quickly to zero asr increases, implying(w,t) satisfies
0 the strong mixing conditioitKhasminskii[10]). According to the
3(0)=f s(m)dn, averaging theorem the processgét,e) and ¢;(t,e) converge
din(6) satisfies bound q it di Sified weakly on a time interval of order 47 to a diffuse Markov pro-
andm(6) satisfies boundary and normality conditions. Si = ) . . o
and 6=m/2 are entrance boundaries, it can be shown that ttﬁges S%(;t’gghig?if‘éitf’fz)revr\:g;helgu%?{:;]nuous w.p. 1, and satisfies
boundary conditions fom( ), are given byAg,=0. Thus apply-
ing the appropriate inner product and using the above boundary d5i=szmi(§)dt+saj(5)dw- i (35)
condition gives _ - o
d¢i:s2ni(a)dt+suij(a)dW- ) (36)

fo L£*(M(6)) o 0)d where

2l

72

o ~ 1 _
=JO L(o(0)M(0)d 0~ *(0)M(6) gro( 6)
0

pi= +2p;; pji)s(w+)

_ 1 _
mi(a)=—dja;+ E[Spﬁais(zwi)"‘ ia

-

which yields zero Neumann boundary conditions #gy. + pgi—Zprpq)S(w_)
THEOREM2. Suppose the system of Egs. (11), (12) satisfies the T I

condition (H), G has an isolated simple zero eigenvalue and the

frequenciesw; and w, are nhoncommensurable. The asymptotic , 7 _ — 23 (20) 4+ (00 VT (o) +(— 1) T (e

expansion of the moment Lyapunov exponent of Eq. (8) is given byn'(a) 8{p,,a, (2 + (i pyp) W (@) (=)W (0 )

9.(p)=£202(p) + O(?), (27)

where g(p) is the largest eigenvalue of the Eqgs. (23) with zero
Neumann boundary conditions.

1 -

3.2 Results Based on Stochastic Averaging.In this sec- (Er)ij:g{pijpjiaiaj(s(w+)_s(w7))},
tion, we shall obtain thé (p) operator defined in Eq23), using
the method of stochastic averaging. The underpinning of the clas- 1, 5 N B
sical stochastic averaging method is a separation of time scales 84 )i =g | Pii(S(20i) +25(0)) + Pij5z (Sle )+S(07)) ],
that the state variables of fast time scales can be averaged while '
the equations of the slow variables are approximated. A math- 1
ematically rigorous proof of this result was given by Khasminskii (W)ij =§{pi,—p,—i(S(w*)+S(w’))+2p”p”S(0)}.
[10]. Since then, several authors have developed the theory in
various directions using various assumptions. Due to the fact thaiOne of the advantages of the above approximatedioations

solutions of the original equations converge weakly to the avek that the amplitudes, are decoupled from the phaseés and
ageq equation, it is not obvious that averaging for the purposetﬁgy form a diffusive Markov process. To obtain the moment
obtaining results on Lyapunov and moment Lyapunov exponentu§apun0v exponent we transform thé kquations for the ampli-

appropriate. Using. Girsanov’s theorem along with the Eeynmap-des in terms of the norm,=|x|| and an angle using
Kac formula, we will show that the method of averaging is mdeeoL[I . o

justified. a;=rcosf, a,=rsing,
In order to apply this method we transform the equations of
motion (8) to a standard form. To this end we shall make use &

1

1
(00 )i=g{pfars2w) +piaj(Sw ") +S(w )},

52

hich results in

transformations similar to Eq10), i.e., 1
. — . . p
X;=a;co0s®;, Xo=—wa;8iN®;, DP;=wit+ ¢y, 28) 9(pixo) g(p,ro)tlmt log E[ 7). 37)
X3=83 08Py, X4=—wya;8INP,,  Pr=wot+ ¢y, After some manipulation, the Ttequations for and the angled
which yield the following set of equations for the amplitudes become
=(a1,a;), phase variableg =(4;, ¢>): dr=e2p(O)rdt+sx;(H)rdw,, (38)
a=eFi(a,o.Of (&) +eFi(a,d.)f, (29) d6=s2u(6)dt+ oy O)AW, (39)
¢i=eGl(a, DI (£(1) +£2GHa, ¢4, (30) where
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2

O = __Jr +1 — a°r P ar
v( )r_mi(a)a_gi E(UU )ijmv Xi( )r_o'ijﬁ
1 %0

_d0 _
=m: —t = e (O =0 —
pO=M(@) 2+ 5@ s (=T

and the solutionP(t;ry) can be explicitly written as

t t
rp(t:ro)=rgexp{ PJOQ(G(S))dSJr pfoxj(ﬁ(s))de(S)},

with
1 2
QO =v(0)= 5 |x(6)].
Making use of the above solution, we can evaluate

E[rP(t;rg)]=r8E

t
exp[ Z(t)+ pfoQ(H(s))ds

p? [t
+7f |X(0(S))|2dSH,
0

P° [
& [ Ixtorsras

where

t
Z(t)=pJ0X1(9(S))dVVj(S)*

Now applying the Girsanov theorem yields

t
oE exp[pJOQ(n(S))ds

p?
+7f|x(n<s>>|2ds} ,
0

E[rP(tiro)]=

where the expectation on the right-hand side of the above expres-
sion is taken with respect to the measure associated with the Ito

equation

dn=&’[u(n)+px"(n)o(n)]dt+eoi(n)dW,.

4 Solution of the Eigenvalue Problem

Except for some special cases, the general solution of Z3).
cannot be obtained explicitly fay,(p). In general, it is also pos-
sible to have singularities if, thus some justification is needed in
order to ensure thaf(6) is bounded and positive. It is clear from
the form of the diffusion term that there may be singularities in
the open interval0,7/2), i.e., whenZ;p;; S(2w;) =0, singularities
exist for piop,1=>0 if S(w™)=0 and cos 2=(po— P21)/ (P12
+Py), and for pp,;<0 if S(w™)=0 and cos?@=(p;,

+ P20/ (P12~ P21). Only the nonsingular cases will be considered
here

In order to reduce the number of cases to be evaluated, we
can simplify the coefficient;; by a suitable scaling of the state
variablesx. It can be shown that it is always possible to take
pP12=* p21= K, In which case the coefficients reduce to

A=z

2
4k%S(w) = D, pﬁS(Zwi)}, B=0,
i=1
1 2
c=3—2{4;<23(w1)+2 pﬁS(Zwi)},
i=1
1 1
D=5 (A1+A)* g k%(S(0)~S(w ),
1 2 2
E= 1_6{p115(2w1) —p5:.S(2w,)},
1 2 + 2
F=5514x S(w*)+ >, p3S(2w) |,
i=1

1
A=A—A,, Aj=—6+ gpﬁS(Zwi), i=1,2,

wherew™ = w,;* w, and in the above expressions the upper sign
is taken wherpi,=p,;=« and the lower sign whep,,=—p»;

According to the Feynmann-Kac formula, the expectatioe: k.

E[rP(t)]= #(7,p,t) is the solution of
J T J
a0+ pxT ()0 (0)] -

1 » 92
27052

Making use of the results of Arnoli®] and Arnold et al[4], the

pZ
pQ<e>77|x<a)|2)w=o.

As in Wedig[11] and also in Bolotif12], the solution of Eq.
(23) can be calculated from an orthogonal expansion. The nature
of the coefficients of the equation suggests that a Fourier series is
appropriate. Because of the zero Neumann boundary conditions
we may expresg, as a Fourier cosine series. Thus, inserting

Yo(6)=, c,co82n6)
n=0

moment Lyapunov exponent is the largest eigenvalue of the sta-

tionary operator

L(p)=L+p T<a>o(e)—+Q<e> +—|x<a>|2
where
|X|2 ( )Ijﬂa aE_Q(H)r
a0 90
|0'| =(oo )Ijﬁa (7a —=0(0),
. ar 90 - 1 )
(XTo)r=(oo’ higa 7 RO, QO)=v(0)— 5 |x(0).

in Eq. (23) leads to the following infinite set of equations:

2 AnrCm=9(P)Ch,
m=0
where
wl2_
amn:j L(p)(cog2mé@))cog2nh)dd, n=0,12... .
0

The existence of a nontrivial solution far, requires that the
determinant of the coefficients equals zero. Thus to evaly(gte
the leading eigenvalue &= (a,,,), we construct a sequence of

Itis clear that the operatchr(p) obtained above is identical to the approximations by finding the eigenvalues of a sequence of sub-

one in Eq.(23).
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matrices:
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First Four Orders of Approximation

o.8 /
: g(p) /

~,

e —'o'.é'””g*\\' oS 5 2 2.5
‘K ing
.44-
‘\k‘“1h0~oikﬂr' il

Fig. 1 Moment Lyapunov exponent for the general case S(2wq)=1, S2w,)=2,
S(w1+wy)=2, S(w1—wy)=1, p;;=1, Pr=2, p1,=pPu=k=1, 6,=1, §,=2

Qo0 Ao1 &o2 1 1
2 8o 801= 35 (P+2)X(P11S(201) — p3S(2w2)) + 5 (82~ 81)(P+2),
[2ool, . |0 au A,
10 811 a a a 1 1
20 21 22
a10= 5, PP1A(5P+ 149 S(201) + 7 PP2A 6+ P)S(202)
Qoo 801 ao2 64 64
a0 a1 & 1, .. 3 1
+ —pr¥(6+ “)— = pdi— = pr—20,,
A Ay By - 16PK (6T P)S(w™) = 5pdi— 5P~ 20,
o G B a =ip2(18p+5p2+8)8(2w )—ip2(10p+p2
11 256 11 1 256 22
. . . . 1 .
The set of approximate eigenvalues obtained by this procedure +40)S(2w,) + — k%(p+12)(p—2)S(w ™) —pdy
converges to the corresponding true eigenvalued-ase. How- 64
ever, the amount of calculation increases drastically with the in- 1
crease in the number of terms considered. Here we present the _ EKZS(‘UI)_QZ_51+ S5,

second-order submatrix for the general capes=p,;=« and
p1>= — P21= K, depending on whether the coupling is symmetri L _
or skew-symmetric. All problems of the form given in E§) can ?;l]helre as b_eforeh the LPF_)er S|_gn |?\ltaken Wp@f'fdp“ « and
be rescaled to one of these two cases. The elements of thig 2 o ¢ OWEr SIGN WNEP:= = Ppy= K. INOW WE CONsider some nu-
Submatrix are merical results to illustrate the convergence of various orders of
approximations. For this purpose consider the numerical values
1 S(2w1) =1, S(2wy) =2, S(w")=2, O?(w(’)=)1. pn=S(1, p2)2: 2,
=1, px=1, 6;=1, 6,=2 and S(2w;)=1 2w,)=2
ag0== P(3p+10)(p2,S(2wy) + p2S(2w P= b Pzl o1=L 02 U= 2= 4
00 64p( p )(P11S(2w1) + P2,S(2w3)) S(0")=2, S(w)=1, pu=L1, P2=2, pi=1, Pr=—1, &=1,
1 5,=2. Here we consider two sets of results up to fourth-order
— 2 \_ _ approximations and the numerical results for these two cases are
* 16pK (6+p)S(07) = p(o1+02) = 202(P), given in Fig. 1 and Fig. 2. Here the first-order approximation is

Journal of Applied Mechanics NOVEMBER 2001, Vol. 68 / 909



First Four Orders of Approximation

2.51
pan
1.571
g(p)
1<—
&
N
0.51
\
s
-1
9 gdﬁ" +
hd Yeerrt '

Fig. 2 Moment Lyapunov exponent for the general case

i
\
’ A

. ]
. ]
4
L

SQwy) =1, S(2w,)=2,

S(@1+w;)=2, S(w1—wy)=1, p;;=1, pp=2, py=—pu=k=1, 6,=1, §,=2

indicated by the symbelwhile the other three approximations2 Coupled oscillators under band-limited noise excitation close

virtually coincide. It is clear from these two cases that the fourthe S(w™):
order approximations are sufficient and the results converge.
However, the second-order approximation gives an explicit for-
mula for g(p) which can provide some insight on the stability
index. These figures also indicate that the oscillators may be
almost-sure stable, since the slopegd{0) is negative, but un-
stable in thepth moment sense for sufficiently large

Now we shall consider some particular forms of excitation
spectrumsS(w) whose values are small every where except
in a neighborhood of somey, i.e., the spectrum vanishes out-
side a bandwidthyy— A wy<w<wy+Awg. In the following, we
shall consider the cases in whigby=2w;, i=1, 2, wg=w;
+w,, andwy= w,— w,. This can simplify the moment Lyapunov
exponents.

1 Coupled oscillators under band-limited noise excitation close
to S2w;), i=1, 2:

)= e 2o D22+ — S (st 8
92 (P)=| 515P * 556P~ 5a) PiS(2wi) 5 (81 8,)p
129 193 31 381 .
4 3 2 to S(w):
* (262144p * 65536”8192 " 65536°

p2S(2w;)

1 p
+ m) pﬁs(zwi)z_(&(ﬁl_ 8)(p+2)?
1/2

=92 (p).

1 2
+ 5(51*52) p(p+2)
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+ = ——
gz (p)= 128

1
5 (81-8)%p(p+2)

11 3 1
)K28<w*>—§<51+ 5P

2, T
P 6aP™ 16

2
K4S((1)+)2

o n2 —
128" " 6aP" 16
1/2

- . 1, +
gz(p)=_§(51+52)p—zk S(w™)

1
+7 V2p(p+2)(8;— 85)%+ k*S(w ™).

3 Coupled oscillators under band-limited noise excitation close

o1 1,
gz(p):_z(éﬁ‘ﬁz)p—zK S(w™)

+ 3 V2D 2) (3 57 RS )

Transactions of the ASME



3 11 3 1 elastic beam of length subjected tdi) stochastically fluctuating

0, (p)= (—p2+ —p- —) K?’S(w™)— = (8,+ 8,)p end moments andii) a stochastic follower force. It is assumed

128 64" 16 2 that the boundaries are simply supported and the end moments

1 1 3)\2 M (t) and follower forceP(t) are applied as shown in Figs(a3

+ [ (_ p2+ —p+ _) Kk*S(w™)? and(b). The motion of the beam is governed by the partial differ-
128 64" 16 ential equationgBolotin [12]),
112

Pw oW I*'w

1
+ (81— 82)%p(p+2)
) SR o
m pre +dy P +E|Xaz4

=0, (42)

Once again the above expressions for the second-order approxi-
mations ofg(p) provide insight as to the qualitative behavior of

2 4 2
stability boundary with respect to the variation in the spectral m'?_LZJer £+EI (7_21+ I (Mxé) +P5(E— Z)d):O
Yot Yoz 2 ’

density. For example, for theoupled oscillators under band- d 9z°

limited noise excitation close to(&"), the symmetric case (43)
p12=P21= k provides a stability index and a stability boundary

while the skew-symmetric casg;,= —p,1=« has no stability P d P J2u

index (g(p) is linear inp) and the system is always stable. Simi- mp2W +d¢W—GJ?+ MX?=O, (44)

larly for the coupled oscillators under band-limited noise excita-

tion close to $w ), the stability index and the stability boundary
exist for p;y= — pay= k Whereas forp;,= po;= « the system is Whereg(z,t), andw(z,t) denot.e the, andy- components of the
always stable. deflection of the beam centerline ards the angle of twist of the

cross section. The delta function ésly present in the follower
L . force case anil, in Eq. (43) can be taken out of the differential
5 Application to Beams Under Stochastic Loads in the case of fluctuating end moments. The quantiigs El,,

Here we apply the general results of the above section in thadGJ are the flexural and torsional rigidities of the cross section
context of real engineering applications and show how these ed d,,, d,, andd, are the viscous damping coefficients. In
sults can be applied to physical problems. Two simple examplesldition,m denotes the mass per unit length gnid the radius of
which best illustrate the theoretical results, are presented heggration. In the follower force case, the functidm, can be ex-
Consider the flexural-torsional instability of a thin rectangulapressed in terms of the applied stochastic load as

Ul >

Iy

(view fromz= L)

(a) stochastic end moment M(t)

. ¥
Vyw (view fromz= L)

(b) stochastic follower force P(t)

Fig. 3 Thin rectangular beam subjected to stochastic excitation
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Almost-sure stability boundary
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Fig. 4 Almost-sure stability boundary for follower force and end moment cases
under real noise excitation, i.e., ®;=0.5, w,=2, k=1, §,=.001, delta,=.002, «=0.5
L [z ,
EPZ’ O=z=< > u(z,t)=pQqq(t)sin T @(z,t)=Qqy(t)sin T 47)
My= (45) - , o .

1 L o Substituting these into the partial differential E¢43) and (44)

2 P(L-2), E\Z\L and considering appropriately the two cases yields
whereP=P(t), the stochastic follower force. The first equation is 1+ 0i0;+ 22201410, + 2 £(1)ky0,=0, 48)
uncoupled from the other two and describes the ordinary random . 2 ) . _
vibration of the beam in the plane of its largest rigidity with in- Uzt @202+ 28 w502 e £(K20: =0,

where
4 2
T T d
(46) wi:_mL‘l Ely, w§=—mp2|—2 GJ, 2820)1{1:Eu,
dg P(t) M(t)
()= —— or —.
PCI’ Mcr

2
2¢? =—5,
e“wyl mp2

homogeneous boundary conditions given by
P*w
Elxﬁ(o,t)=Elxﬁ(L,t)= —M,=—M(t).
The other two equations form a pair of coupled partial differential
equations with stochastic coefficients, =M (z,t) given by Eq.
case of fluctuating end moments. For both the cases the two equgre, P(t) and M(t) are assumed to be a stationary stochastic
tions are subjected to homogeneous boundary conditions givenf¥$cess and®., and M., are the critical flutter load for the fol-
lower force and critical static buckling end moments, respectively,
and are given by
4|w§—w%|mLp L2
M, = mpa)lwz?.

Per= )
V(28— 772)(4+ 772)

J
uot)=u(L,t)y=—=(0t)= ?(L,t)zo,
positive values of; and{,, the deterministic system of E48)

(45) andP=P(t) in the follower force case and,=M(t) in the

2 2

9z°
#(0)=¢(L,t)=0.
Consider the shape function sia/L which satisfies the bound-
ary conditions. For the first mode of vibration, the displacemey specifying a very thin beam, it follows that§< w%. For all
u(z,t) and twist¢(z,t) can be described by
Transactions of the ASME

912 / Vol. 68, NOVEMBER 2001



Stochastic Follower Force
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Fig. 5 Moment Lyapunov exponent for the follower force problem with k=1, 6,

=0.5, 6,=1, S(0¥)=1, S(w™)=1

is stable. We shall consider the stochastic problem with meanThe second-order moment Lyapunov exponent is given by

fluctuation levels much less than the critical loads.
For the follower force case

72\ 1 [28-#?
Kip=P.— _ == _| 2_ 2|
27 eomip | 4] 2 Va2 10
2 1 4+ 2 2
ker= = Pegm (17 77|~ 3 Vg2l @2,
whereas for the end moment case
e
12— Ko1= crmp E —wiw3.

Sincek;; = pj;o;, scaling the coordinates; andq, as

U1 Vw(28—7°)01,  Gp— wi(4+7°)q;

yields

1+ 0i01+26%01£10; + e () 01xG,=0, (49)

o+ w30y + 282w, 0, + £ £(1) kG, =0,

_ 1 2 = (3 2 11 3 2 + 1 S
gz(p)——zK S(w™)+ 28P T 5P 16 K S(w )_E( 1

Jlo - (1,1 3
+8)p+| K ZS((U )+(E8p +ap+l—6)8(a) ))
1 1/2
+5(61-6)7p(p+2) (50)

In addition, the maximal Lyapunov exponent for these two
problems can be easily obtained from Sri Namachchivaya and Van
Roesse[9] as

4(8,— 8, )tan t M)
_ k) (s T S0
2 2 K2S(0)S(w™)
2
5 (S(0)=S(07), (51)

where the lower sign corresponds to the follower force and thvéhere, once again, lower and upper sign correspond to the beam

upper sign corresponds to the end moment force, with

Voio,, for the end moment force,
2 2
K= wi—w
u, for the follower force.
2\ww,

Journal of Applied Mechanics

with the stochastic follower force and stochastic end moments,
respectively. We remark that it appears that the expressiom)
given by Eq.(50) does not agree with given by Eq.(51). This
discrepancy is due to the fact that Ef1) is an exact solution of

the eigenvalue problem up t©(e) while g5(0) given by Eqg.

(50) is obtained by a sequence of approximate eigenvalues for the

NOVEMBER 2001, Vol. 68 / 913



€ order eignenvalue problerf23). Although the analytical ex- In conq[usion, we have obtained by two different methods the
pressions given by Eq50) and Eq.(51) do not agree, their nu- generatoiL(p) given in Eq.(23) for which g,(p) is the principal
merical values are in agreement. eigenvalue. Except for some special cases the general solution of

Numerical results for the stability boundaries are obtained f&q. (23) cannot be obtained explicitly fay,(p). In this paper we
both of these problems for the system parameteys0.5, w, have obtained certain approximate solutions based on Fourier
=2.0, k=1, 6,=.001, 5,=.002. The results presented in Fig. 4analysis and it is shown that within four orders of approximation
are based on a real noise generated by a second order filter eque-obtain qualitatively good results.
tion and power spectral density given, respectively, as
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Moving Loads on an Elastic
averiit | Half-Plane With Hysteretic
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A closed-form solution is presented for the problem of a moving point load on an elastic

Department of Civil Engineering, half-plane with hysteretic damping. The problem has been studied in order to investigate
Delt University of Technology, the dynamic amplification of stresses and displacements if the velocity of the load ap-
Stevinweg 1, proaches the Rayleigh wave velocity or the shear wave velocity in the elastic medium.

2628 CN Delft, The Netherlands This is relevant for the construction of high speed railway lines on relatively soft soils.

Hysteretic damping is introduced as pseudo-viscous damping, assuming that the damping
in a full cycle of loading and unloading is independent of the frequency.
[DOI: 10.1115/1.1410097

1 Introduction by Van Baars[10] has shown that one of the most important
deformation mechanisms of a granular material is that in an ar-

This paper presents an analytical solution of the problem of . ) )
vertical load moving at constant speed over the upper boundaryr%pgement of four particles the main force transfer chain changes

the half-planez>0. The material is isotropic linear elastic, with]tr?m a?i%rrllzsogﬁg ttg \gg:ﬁgl oizﬂ rbiicglotshe‘tshz?c.) aldirllgegﬁésmlg Sﬁ
hystereth damping to represent the ene_rgy_dlssmated by pla§ Igding part of the cycle. A simple interpretation of the mecha-
;j_ﬁ?gﬂt'%msigzzggmg ;tisc?r? cIJSf ﬁ]gzzﬁlftzéﬂtzgrgoﬂeggﬁHU{Hsm shown in Fig. 1 is that the original assembly can only carry
3 : mall vertical load, depending upon the lateral load and the
% flgiyi)hae[ Lij]ni?]r:i]?ﬁg fct?rsetl:ctigr?sbey’ éi%rzliz%isgg%ega?ggrSUhﬁltjtion in the inclined contact surfaces. If the vertical load is
! ! ; - ; . increased the assembly becomes unstable, and the top particle will
The purpose of the paper s to investigate the influence of h.s- pushed through thg two particles below it, until aphporizontal
teretic damping on the_ dlsplac_ements and the stresses, as | ontact plane is formed with the lower particlé. From then on a
expected that hysteretic damping may greatly reduce the Iar‘j ?ge vertical force can be transmitted. If subsequently the vertical

stresses and strains near the critical velocity. Solutions for the?". : S
undamped case indicate that very large displacements and stre;%%% is decreased or the horizontal load is increased, the assembly

occur for values of the velocity of the moving load in the vicinity) 1o 'SVert to its original shape, again dissipating energy due to

. : friction in the sliding of the grains.
or larger than the propagation speed of the Rayleigh wave, Whlt'EhMechanisms such as the one illustrated in Fig. 1 are considered

has been shown to be of great importance for the analysis of th ;  tra . ; ) X
effects of high speed trains on relatively soft soils by Dieterm%ﬁebe responsible for the stress-strain behavior obtained in a cyclic

o axial compression test on sand as shown in the left part of Fig.
and Metrikine[6]. It has been suggested by Verrdijt] that the 1axia . .
relatively large hysteretic damping which is characteristic for soﬁ’ V\r'h,\',TQUQZSTbheee?ngﬁta}gzﬂ rfaosr ; :ﬁg'(ﬁ: e[s)g-tgpr a?r?nb%hZSirg . trhe?_
soils may lead to a considerable reduction of the peak stresses§§ ht to d ﬁamic loads seem to be the stiffness and the dampin
peak displacements. This will be investigated in this paper for t y ping.

case of plane strain deformations of a half-plane. It will appeéﬁ gg?eisr itn(;r cﬁj;ljsgél?ew?tr]he?tz ;ﬁg;urrﬁ:hgci oerqduel\éilr?l;g dVl;SCOG|aStIC
that a simple closed-form solution can be obtained for the case of ' y

a moving point load. Including hysteretic damping as an integral r=Gy+Gt ¥y 1)

part of the material behavior also appears to unify the limiting re

case of zero damping, as there is no need to distinguish betwegtere G is the shear modulus antd is a retardation constant,

small and large velocities. representing the effect of the viscous damper.
) ) The equivalent retardation constant for cyclic hysteretic defor-
2 Hysteretic Damping mations as illustrated in Fig. 2 can be determined by comparing

One of the basic principles of soil mechanics is that the defdie dissipation of energy in a full cycle with the dissipation in a
mations of granular materials are not caused by deformations‘é§coelastic model, assuming a frequensyThe dissipation of
the grains themselves, but are mainly caused by local rearran§B€r9y 1S characterized by a damping rafid11]), defined as/
ments of the granular structure, with grains slipping and rolling 1/2 Siny, wherey is defined by
over each other. This is one of the basic notions behind Terzaghi's ¢ — ot 2
principle of effective stres§8,9]). Thus a large part of the soil any= ot . )

deformations is of an irreversible character, even though graiggmparison of the dissipation of energy in the two modEl3)

may sI_ide back _into their p_revious position dur_ing unload?ng;]e‘.jdS to an expression for the damping ratio of the form
Analysis of the micromechanics of granular materials up to failure

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 26
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the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departr

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, ar...
will be accepted until four months after final publication of the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS. Fig. 1 A full cycle of deformations of a soil element
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Fig. 2 Cyclic triaxial test and its representation by a viscoelastic element

3 7 3 y The basic equations are the equations of motion in plane-strain
(=— =\ (3) conditions for a linear viscoelastic material,

T Tmax T Yo )
where 7 is the amplitude of the cyclic shear stresg,, is the N 1+t E)EJF (1+t ﬁ)vzu: &_u 4
shear strengthy, is the plastiqirreversible deformation in a full (A +p) ot)ox M ot Pz “)
cycle, andy, is the amplitude of the cyclic deformation. In this 5
paper it will be assumed that the damping rafits a constant, d)oe oo, IW
assuming that in the class of problems considered the average (A u) 1+tfat 0z tr 1+t'at v W_pW' ®)

level of stress remains approximately constant. This is in agree- ) )
ment with the conclusion of HardifL.2], on the basis of an ex- Whereu andw are the displacement components, ani the
tensive experimental program, that a viscoelastic model can Ylume straing=du/dx+ dw/dz. The material properties are the

used to describe the behavior of sand if the viscosity is assumec@lgstic coefficients. andx and a relaxation time, . For reasons
be inversely proportional to the frequency. of simplicity the relaxation times for the two fundamental forms

It follows from (3) that the maximum value of the damping®f deformation, shear and compression, have been taken equal. In
ratio is about,,=0.30, on theoretical grounds. This is veryorder to describe hysteretic damping the valuet,oshould be
close to the maximum values reported by Hardin and Drnevi¢Rversely proportional to the frequency of the loading.

[13] from an extensive review of many laboratory tests. Realistic The Egs.(4) and (5) are the basic differential equations for a
values for the damping ratios of soft soils seem to be of the ordétearly viscoelastic material, with the parametebeing a mate-

of magnitude 5:01 or g: 0.2. These values Correspond tdlal anstant. The generahzatlon_ made in thIS paper |S. that the
tany=0.204 and tag=0.436. equations are assumed to be valid for any cyclic load, with cyclic

It should be emphasized that for a classical viscoelastic mater@@formations, but that the value of the parametewill be differ-
the damping ratio depends upon the frequency of the loadif§t for different frequencies. Strictly speaking, it is assumed
cycle, see Eq(2), so that the higher frequencies are damped mofgat the basic Eqg4) and(5) are valid only for a single frequency
strongly than lower frequencies. This is not a realistic descriptid¥ l0ading, and that for a different frequency of loading the value
of the hysteretic damping of soils, however. For soils it can b t; must be adjusted so thatt, remains a constant. This will
expected that the damping will be about the same, whatever {gad to a response to cyclic loads independent of the actual fre-
frequency. In terms of a viscosity this means that the apparét#€ncy, as is normally observed in cyclic testing of granular ma-
viscosity is small for high frequencies, and large for small frelerials, and is obtained theoretically from the elastoplastic analysis
guencies, so that the produet, remains constant. of cyclic loads of soils. For each frequency a linear relation be-

A small hysteretic damping ratisay £=0.001) is sometimes fween load and deformatl_on is assumed, and in addl_tlon it is now
used in numerical solutions of dynamic problems in order to stassumed that for a combination of two or more cyclic loads, the
bilize the solution and avoid the singular behavior for certain critfesponse will be the sum of the deformations. This enables a Fou-
cal velocities([14]). Such solutions are sometimes referred to déer series approach to more general types of loading.
viscoelasti¢ although strictly speaking that is not quite correct, The problem to be considered is to determine stresses and
because the frequency dependency of the viscous dampingdigplacements in the half-plane>0, subject to the boundary

ignored_ conditions

It should be noted that the model used in this paper, with a "
constant shear modulus and a constant damping ratio as its main  z=0: ¢,,=0, o,~ f F(a)co§ a(x—vt)]da, (6)
characteristics, is only a first approximation of the behavior of real

soils. In reality soil behavior is known to be nonlinear, with the ) ) . .

shear modulus decreasing with the strain rate, for instance, and féereF («) is a given real function of the positive real parameter
damping ratio increasing with the strain rate. Such a complicatégl @1dv iS @ given positive velocity. These boundary conditions
type of behavior can only be taken into account in a numeric§Press that the upper surface of the half-plane is free of shear
model, however. The analytical approach used here can be use@&SS: @nd that a given distribution of normal stress is traveling
a validation of numerical models, and may also give some usef|PNd this surface at a constant veloaityin positivex-direction.
insight in the type of behavior that can be expected in real soils. Th€ second boundary condition can also be written in the form

3 Solution of the Problem z=0: UZZ=%I F(a)exdia(x—uvt)]da. 7
0

The problem to be considered refers to a viscoelastic half-plane
z>0, loaded by a moving load on its surface. The material i& possible interpretation of this boundary condition is that it con-
isotropic and linear viscoelastic, with hysteretic damping onlgists of a superposition of harmonic loads, of frequeaeyav.
Hysteretic damping is defined as a special type of viscoelasticFor a moving strip of width B, F(a)= — P sin(ab)/m7ab,
damping, the special property being that the damping ratio in easthereP is the amplitude of the total load. By letting the width of
full cycle of loading is independent of the frequency of the loadhe stripb— 0 the case of a moving point load is obtained. In that
ing. The load may be a moving strip load or a moving point loadase the loading function is simpB(«) = — P/ 7. Although most

916 / Vol. 68, NOVEMBER 2001 Transactions of the ASME



of the derivations in this paper will be valid for an arbitrary load- 2.0 e TR :
ing functionF(«), all examples will apply to the special case of : : 5
a moving point load.

The general solution of the problem is expressed in terms of the
horizontal and vertical displacemenisandw. These are repre-
sented by the Fourier integrals,

u=9%fwﬁ(a)exp[ia(x—vt)]exp(—aaz)da, 8)
0

w=9‘twa(a)exr{ia(x—vt)]exrx—aaz)da, (©)] E
0 — g(al) 1.0 [sprobgge o

where the complex constaatis unknown in this stage. It is as-

sumed that its real part is positivéi(a) >0, so that the solution

will vanish forz—. It is also assumed that the imaginary part of

a is negative,j(a) <0, so that waves will propagate in positive

zdirection. This is theradiation condition first formulated by 0.5
Rayleigh[15]. If we write a=p—iq the solution will contain a

factor expia(x+qgz—ut)], whereq must have a positive value, to

ensure that for a fixed value afthe wave is propagated in posi-

tive z-direction. The unknown functions(a) andw(«) will in

general be complex functions, involving the real and imaginary

parts ofa. 0.0 k-

Substitution of the expressioii8) and(9) into the basic differ- 0.0 0.5 1.0
ential Egs.(4) and(5) now leads to the following system of equa-
tions for the determination of the functionga) andw(«), R(a1)
((m—2a?)(1-2i¢)—&)u+i(m—1)(1—2i{)aw=0, (10) Fig. 3 Firstroot a, as a function of £and ¢
i(m—1)(1-2if)au+((1—mad)(1-2i¢)— £2)w=0, (11)
where

2 damped cas€?2]). For small velocities the roots are real, and for
m= At2u  2(1-v) G (12) very large(supersonig velocities both roots are imaginary.

uw  1-2v c§ ' Figure 3 shows the values of the real and imaginary parts of the
) ) roota,, as a function of the dimensionless velocity v/cg and
gzzﬂ _Uv (13) the damping ratia. It may be noted that,=1 for £&=0 and all
" c§ ’ values of¢, and thata, =0 for £&=1, {=0. The value of the other
roota, can be obtained from the value @f by substitutingé/ m
2{=wt, = avt, . (14)  for &, see(16).
Here ¢, and c, are the propagation velocities of compression The precise definitions of the constapis d,, p,, andq; are
waves and shear waves in the elastic material. In order to repre- p1=R, cog6;), q;=R;sin6,), (19)
sent hysteretic damping the damping factevill be considered to
be a given material constant. In terms of a viscoelastic material p,=R;co86,), q,=R;sin(6,), (20)

this would mean that the relaxation timgis inversely propor-

tional to the frequencyw=av. It should be noted that in the whereRy, Ry, 01, andd, are defined by

description of hysteretic damping a factor igh is often in- W (1=E+47)2 4728 2082
cluded in the definition[16]), so thatZ is always positive. In this ~ Ri= (1147272 , 26,=arcta 1-—g2+az)"
paper a positive value af is ensured by restricting and « (and (21)
thus w) to positive values.

The symmetric system of Eq$10) and (11) has a nonzero . (1=EIm+47%)2+ 4726 m?
solution only if the determinamk is zero, Re= (1+47%)2 '
A=m(1-a%?(1-2i$)°—(m+1)(1—a?)(1-2i{) &+ &*=0. 2082/m

. . (15) 202—arctar(1_§2/m+4§2 ) (22)
This leads to the possible roots . ' .

5 5 It is assumed that the angle®2and 29, are restricted to the
5 ¢ 5 &Im intervals
a]_:l—l_—m, 82:1—1_—2i§. (16)

In order for the roots to represent finite waves traveling in positi
z-direction the real parts cdi; anda, must be positive, and the
imaginary parts must be negative. Thus if we write

Vfhis ensures that the values pf, 9., p», andq, are always
non-negative.
For each of the two solutions, characterized by the vahies

a;=p;—idq,, a,=p,—id,, (17) =a; anda=a,, a pair of the Fourier transformsandw can be
- established so that the basic E¢E0) and(11) are satisfied. Ad-
then all these constants must be positive, dition of these two solutions will lead to a general solution involv-
p;>0, q;>0, p,>0, g,>0. (18) ing two unknown constants, sap andu,. These two constants

, can be determined from the two boundary conditi@)sThe final
If {=0 the squares of the roots are reaﬁ=1*§2 and a; expressions for the Fourier transforms of the displacements then
=1-—¢2/m, in agreement with the known results for the unare found to be
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iF(a) 2aa,exp—ajaz)—(1+ad)exp —ayaz) (1+2i0)ay(1+a?)

u=-— - A, +iBy=— . 33

U= a1=-2i0) 4aja,— (1+a?)? ’ 27182 4a,a,—(1+a?)? (33)
(24)

5 andl, andl, are elementary Fourier integrals, defined by
_ F(a) 2a, exp(—a,az) —ay(l+aj)exp —araz)
w=— - . . :
1-2i —(1+a%)? = exfdia(x—vt)]—exdia(x+I—-vt
e {) 4a;a,—(1+ay) | = Hia( )1~ exilial )]exq—a-az)da,

(25) L a !

The determination of the actual displacement components requires (34)

evaluation of the Fourier integral®) and (9). Convergence of ) ] ) )
these integrals depends upon the nature of the characteristic fuffferej=1 orj=2. These integrals can be evaluated using stan-
tion F(a). When the resultant force of the load is nonzero th@ard Laplace transform tablégL8]), noting that the roots; can
integrals are singular, but even then the derivatives of the intg¢ decomposed into real and imaginary partsaby p;—iq;,
grals, needed for the evaluation of the stresses, may converge Wi both constants being positive, sé). The result is

course, the singular behavior of the displacements for problems of )

the elastic half-plane under the action of a given surface load is lj=J;+iKy, (35)
well known ([17]). It may also be noted that in the undamped case
(£=0) the denominator in the expressiof2s) and (25) will be  Where
zero if the velocity equals the Rayleigh wave velocity, indicating

2 2
a singularity in the displacements. In the generalized damped J :L (pjZ/)"+[q;z/l + (x—vt)/1+1] (36)
case, with{>0, there are no such singularities, although the dis- 2 (pjz/I)2+[qu/I +(x—vt)/171? |’
placements may be very large if the damping ratio is small.
The Fourier transforms of the stresses are, using the trans- p;z/1
formed form of the constitutive relations, Kj=—arcta 177 1
N ) 2 : — —_| ==
v —F(a) (pjz/l)=+| gzl + (x—vt) /I + 2} 7
2 2 2 (37)
4a,a, exp(—ajaz)—(1+aj)(l—aj+2a3)exp —a,az)
X daja,—(1+a2)2 » Substitution of(35) into (31) finally gives
(26)
— 4aja, exp(—ajaz) — (1+a%)2 exp( — a,az) Aw= 1+ 47 )[AlJrBlKﬁAsz*Bsz]- (38)
o, ~F(a )

da,a,—(1+a?)? . . .
(27) All that remains to be done for the construction of a graphical
representation of this function is to evaluate the real constents
expl—a,az) —expl—a,az) B;, A,, and B, from the definitions(32) and (33). This is a
4a1a2—(1+a§)2 ) simple matter of separation of the expressions in the right-hand
(28) sides of these equations into real and imaginary parts, using the
definitions of the complex parameteas anda,.

y,= —2iay(1+ad)F(a)

It can easily be verified that the shear stresg and the normal
stresso,, indeed satisfy the boundary conditiof(®.

_ . _ _ 5 Examples
4 Vertical Displacements for a Moving Point Load As a first example the vertical displacements in the field are

One of the most interesting quantities is the vertical displacehown in Fig. 4 for a practically undamped cage=(0.001) and a
mentw. The general solution for the Fourier transform of thigarge (supersonig velocity (v/cs=2). The figure indicates that
variable has been given in E{5). For the case of a moving two discontinuities are generated. The slopes of these two discon-
point load this gives, with9) andF(a)=— P/, tinuities are in agreement with the solution for the undamped case

by Cole and Huth([2]). Actually, in the undamped case the two
o] — — 2 p—
P mf 28, expl—a1az) —ay(1+a;)exp — a,a2) discontinuities are given by xt-vt)=—agzz and K—uvt)

=—X
Ve 0 wa(1-2i0)[4aa,— (1+a)?] = — apz, Where forv=0 andv/cs=2: as=v3 anda,=1, which
‘ is in excellent agreement with the slopes of the two discontinuities
xexfia(x—vt)]de. (29) that can be observed in Fig. 4. For values of the damping ratio

This integral does not converge, because of the faatdm the smaller than 0.001 the results are found to be practically the same,

denominator of the integrand, indicating that the displacemer’{f’éthhth_e ]gliscontim;itiels becoming even shz_irpﬁr. o
are infinitely large. For practical purposes this difficulty can be 1€ influence of a larger damping ratio is illustrated in Fig. 5,

eliminated by considering a differential displacemant, defined N Which the damping ratio has been increased+d.1, and the
as other parameters, Poisson’s ratio and the velocity of the moving

load, are the same as in Fig. 4. The two singularities can still be
Aw(X,z)=w(X,z)—wW(x+1,z), (30) observed, but their effect is less pronounced. For larger values of
the damping ratio the results become gradually smoother. On the

wherel is a given nonzero length. Substitution @) into (30 other hand, for supersonic velocities a small upward displacement

gives in front of the load may be observed. This may seem to be a
P ) ) surprising effect, but it occurs only if there is a considerable
w= m%{(Aﬁ'Bl)' 1+ (Ax+iBo)la}, (31)  amount of damping, and it has also been verified that the vertical
velocity directly below the point load is always in downward di-
whereA;, By, A,, andB, are real constants, defined by rection, so that a positive amount of work is done.
2(1+2i)a, Fo_r very small_ velocities the resul_ts will approach the classical
A+iBi=————————5, (32) solution for a point load on an elastic half-plagiamant’s solu-
4a;a,—(1+aj) tion ([17])). In the case of velocities close to the Rayleigh wave
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velocity the displacements become very large, and there islaager for velocities near the Rayleigh wave velocity. By varying
strong discontinuity just below the load, see Fig. 6. The velocitye value of the damping rati¢ it has been found that the dis-
in this case i /cs=0.874032, which is the velocity of Rayleigh placements are approximately inversely proportiond, teith the
waves in an elastic medium if=0 ([11]). Note that in Fig. 6 the displacements becoming infinitely large wh&r>0. This is illus-
scale of the displacements is a factor 50 different from the Figstrated in Fig. 7, which shows the product of the damping rétio

and 5, indicating that the displacements are indeed very muahd the displacement differenckw in the point x/I=-0.1,
(z —vt)/l
0501 00 . 0.1
z/l = - : ‘
) i |
i i
T
- i ;
0.1 :
Aw =100 P/pu

x

Fig. 4 Moving point load, Aw, »=0.0, {=0.001, v/cs=2.0

(z —ot)/l
—0.1 . .
0.0 1 } ; ; O{O, : 1 0.1
]
z/l I
0.1 : i \ i : |
o Aw =100 P/u |
~ L
Fig. 5 Moving point load, Aw, »=0.0, {=0.1, v/cs=2.0
(z —wt)/l
—0.1 . 0.1
0.0 0 ‘ 1 0 0‘ ™
—r= : ]
z/l
1 i ] !
0.1 : i e

} w = 5000 P/u |

Fig. 6 Moving point load, Aw, »=0.0, {=0.1, v/c;=0.874032
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=10 i L
Awlu/P p =101 o

v =0 — T L]

r =03 — T

,=0.499 7]

0.0
0.00001 0.0001 0.001 0.01 0.1
¢
Fig. 7 Moving point load, Aw at Rayleigh wave velocity

z/1=0.01 as a function of, for various values of Poisson’s ratio 4aja,+(1+a?)?
v. It appears that for small values of the damping ratio this prod- C+iD (42)

-2 - o
uct is practically constant. 4aja,—(1+ay)

. Using these expressions the stress distribution can easily be pre-
6 \Vertical Normal Stress sented in numerical or graphical form.

Some more information on the character of the solution, and theA first example is shown in Fig. 8, which presents the vertical
influence of damping, may be obtained when considering tt@rmal stresses far=0, {=0.001 andv/c,=2, the same data as
stresses. For the case of a moving point load the vertical nornisied for Fig. 4. The very large stresses along the two lies (
stresses are, witk27) and F(«)=— P/, and applying the in- —vt)=—as and X—vt)=—a,z confirm the propagation of

verse Fourier transform, two shock waves, in agreement with the discontinuities in the
. 22 displacement field.

o P YR 4a,a; expl— a,az) — (1+a7)” expl— aa2) The influence of the hysteretic damping on the magnitude of the

7z T 0 da,a,— (1+ af)2 stresses is shown in Fig. 9, in which the damping factor is a factor

100 larger,{=0.1. In this figure the scale for the stresses is a

Xexdia(x—vt)]da. (39) factor 20 smaller than in Fig. 8, and the values in the figure them-

selves are also much smaller. The results clearly show that the
ey large stresses for small values of the damping ratio are much
feduced if the damping ratio increases.

The maximum value of the vertical normal stress at a depth

Becausea, anda, are complexa;=p;—iq, anda,=p,—iq,,
this leads to integrals of the Laplace transform type, which c
easily be evaluated. The result is

P ((1+C)p;—D[q;+(x—vt)/z] z/I=0.1is shown, as a function of the velocity of the load, in Fig.
02—~ 5 5 2 — 2 10, for five values of the damping ratip and using the maximum
2mz Pitlart (x—vt)/z] static value P/(wz) as a reference value. The influence of the
(1-C)p,+D[g,+ (x—uvt)/z] damping ratio is again found to be very large. For very small
P2+ [t (X—0t)/2]? ) (40)  values of the damping ratio the results are not shown, as the two
2 2 peaks would become very large, in agreement with the results
whereC andD are real constants, defined by shown before, in Fig. 8.

(z —vt)/l
0501 | o 0.0 ~ 01
T
T t
T !
)
— “
0.1 ‘

] .. = 20000 P/l

f =1

Fig. 8 Moving point load, o,,, »=0.0, {=0.001, v/cs=2.0
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Fig. 9 Moving point load, o,,, »=0.0, {=0.1, v/cs=2.0
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Fig. 10 Moving point load, Maximum vertical stress, r=0.3333
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Axial Vibration of a Padded
s.8.cuzna | Annulus on a Semi-Infinite
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F. Nintcheu Fata

Research Assistant, The vibratory punch problem for a viscoelastic half-space indented by a padded annular

e-mail: nint0004@tc.umn.edu disk is investigated. By virtue of transform methods, the problem is formulated as a set of
S triple integral equations which are reducible to a Fredholm integral equation of the

Department of Civil Engineering, second kind. In the formulation, the response of a thin buffer which regularizes the load

University of Minnesota, transfer to the semi-infinite solid is approximated via a plane stress-type solution. A set of

500 Pillsbury Drive, SE numerical results is included to demonstrate the effect of padding characteristics on the

Minneapolis, MN 55455 dynamic system response. Apart from providing an interpretation tool for the nondestruc-

tive testing methods involving buffered annular loading systems, the present solution can
be used as an effective approximation to the corresponding rigid-punch problem which
has so far eluded a rigorous mathematical treatmefi2Ol: 10.1115/1.1410098

1 Introduction the harmonic response of a padded annular footing vibrating ver-
Dynamic interaction of an annular disk with a semi-infinit tically on auniform.visc'oelastic semi-.infinite solid. Formulated in
solid has been a subject of fundamental interest in applied e[e_rms_ of a set of trlpl_e integral equations, the problem 1S reduced
hani ver the past few decades because of its importance trcT)} a single Fredholm |r!tegral equation of the second kind W‘hICh is
chanics ove P P nable to an effective computational treatment. Numerical re-

seismic analysis and design of structures such as cooling tow%?ts are included to highlight several key aspects of the physical

radf)llr SIat'?hnS’ ar?d t“qut'd C%ntglntmint liatnkSE.I gﬁrfth's C?‘Qg blem. Beyond serving as a tool for the consistent interpretation
problems, the early treaiments date back 1o El-shaiee and Loyt namic field tests performed on profiles that are nearly uni-

[.1]. and Tassoulas and Kausel] Wh.o mdepepdently_employecj 8form to a sufficient depth, the analysis developed provides the
finite element method coupled with a semi-analytic transmitting, sis for extensions of the methodology to more general, multi-
boundary to represent the radial wave propagation in a SquO”'I%ered systems. '

elastic medium. A further insight into the nature of the problem

was provided by Veletsos and Tap8,4] via a direct boundary 2 problem Formulation

element solution for the vibrations of a rigid ring on a uniform . ) o .

elastic half-space, and Rajapakid who examined the time- . ConS|der_ the axial vibration o_f a paqlded annular footing of
harmonic load transfer between a flexible annular plate andi§ernal radiusa, and external radiua resting on a homogeneous
semi-infinite viscoelastic solid using a variational principle. OwiSOlropic viscoelastic half-spadsee Fig. 1 The vibrating foun-
ing to the complexity of the triple-integral equation systems th4@tion is a system consisting of a massless rigid annulus underlain
are intimately involved in the analytical solutions for ring-shapefy @ thin elastic body of thickness shear modulug:p, Pois-
contact geometrie§6]), however, dynamic interplay of an anny-Son’s ratiovp, and mass densityp . The rigid disk is subjected

. . . - .ﬂ)t .
lar disk with a solid half-space has so far evaded a rigorous trelf-@ time-harmonic vertical displacemene'*" where v is the
ment that is attainable for the corresponding circular footing"cular frequency of vibration. The sides of the footing and the
problem ([7—10)). urface of the half-space outside the contact area are free of

In the context of nondestructive testing, the subject of dynamit'€SSes, with the axial displacements and normal stresses being
annulus-half-space interaction is also relevant to the proliferatifgntinuous across both terminal sections of the buffer. With refer-
class of site and material characterization techniques based SIf€ 0 the cylindrical coordinate system{,z) set at the center
stress waves emanating from a ring-shaped loading(figk12). ©f the padding’s bottom contact area, the semi-infinite satid (
Owing in part to a thin rubber padding, often attached to thgC) IS characterized by the shear modujusPoisson’s ratior,
bottom of the source platé13]), the near-field waveforms stem-Mass density, and the damping ratios
ming from such loading systems are commonly interpreted on the 1 AW, 1 AW,
basis of the uniform contact-pressure assumption for the loaded &p= ar W &= in W' (1)

.. . . . . T a
area. Several elastostatic investigations concerned with the subject P s
(e.g., [14]), however, indicate that the neglect of site-loadingor compressional and shear waves, respectively1InAWg(q
system interaction may be inappropriate for certain fielekp,s) is the amount of energy dissipated per cycle of harmonic
configurations. excitation in a representative volume, whil, is the peak strain

To provide a rational basis for quantifying near-field effects ofnergy stored in the same volume of a solid subjected to compres-
source characteristics in nondestructive site and material chargienal(p) or shear(s) body waves. In this investigatiog, and &
terization by wave methods, the focus of this communication &€ assumed to be frequency-independent which corresponds to
the case of hysteretic damping which offers a reasonable approxi-
mation of dissipative mechanisms in many frictional materials

Contributed by the Applied Mechanics Division ofif AMERICAN SociETY oF  such as soils and rockgl5]).
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 29, 2.1 Response of Elastic Padding. To facilitate the solution
2000; final revision, June 12, 2001. Associate Editor: R. C. Benson. Discussion @) the |oad-transfer problem illustrated in Fig. 1, it will be as-
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whereC, andC, are the constants of integration to be determined
from the boundary conditions. To such end, one may inv@e
r and the requirement that the sides of the padding are stress-free,
. that is

#F4a) =0, &7ta)=0, (7)
which yields the depth-invariant parameters
—vp(l—wvp)

C,=
Y pup(1+vp)(a?-ad) o

7634 7)d,

- Vpag

a
=— o2 rdr. 8
2 untar—a) ), @

Fig. 1 Padded annulus on a uniform viscoelastic half-space By virtue of (6) and (8), the axial strain in the padding can be
shown to admit the representatioff4r,z,t) =P2{(r)e'“! where
“ 1_2Vp R d Vp 1 d n n
27 [up F/A = Ay 75 1oy ar 10F9=adiin T4,
©)

< <=/, h<
h<a h ® pp’ h m(a’—ag) w’pp’ @)

for the range of frequencies of interest whéids the resultant With the parameters
interfacial force between the padding and the top disk. Physically, 1-vp ,,g fa

(2b) postulates that the shear wave length in the pad significantly «= B= —
exceeds its thickness, whilgc) implies that the mass of the 2pp mp(1+vp)(@®—ap)
buffer has a negligible effect on the overall system response. Un- (10)
der such hypotheses, the shear stress comparféfin the pad- dependent on the properties of the buffer as well as the average
ding can be neglected and the variation of the axisymmetric stresmmal stress transmitted through the padding. It is of interest to
field within the buffer can be approximated viaptane stress- note that upon neglecting the Poisson’s effects in the padding via
type i.e., depth-independent representation setting vp=0, (9) reduces to the familiar one-dimensional rela-
—h<z<0 tionship P2%= GP2YE, where Ep denotes the buffer’s Young's

( ) zz zz
ap<r<a, modulus.

~_pa
76039 7)d,

)
ap

o-]-plfd(r,z,t): Sl et jk=r,0,z

where &;, denotes the Kronecker delta with no summation im- 2.2 Normal Load on a Half-Space. For a general represen-
plied. On the basis d3), the equilibrium equations governing thetation of the response of a lossy semi-infinite solid to time-
response of an annular padding reduce to harmonic excitation, it is convenient to employ the correspon-
goPad  gpad_ s pad he2<0 dence principle{l_G] which states that the damped_solution in the
LS S ! 4 frequency domain may be obtained from the elastic one by replac-
ar r ' ap<r<a, ing the featured elastic constants with the corresponding complex

in the absence of inertial body forces which are, consistent wifjeduli- By virtue of(1) and dissipation analysis in Findley et al.

(2c), assumed to be insignificant relative to the stresses transrht/: the complex shear modulus and the Poisson's ratio for the
ted through the buffer. By means of the generalized Hooke's Ia)I-Space outlined in Fig. 1 can be written, respectively, as

for an isotropic solid and the compatibility conditiorid) can be wr=p(1+2i/1-482),
rewritten as °
019, Apad)> vp do%3"  —h<z<0, ) v
—|—=—(rd =—o— .
ar\ror 2pp dr dp<r<a, (1=v)(1+2i&,/J1-4E) = (1-2v)(1+2i&5/\1-4&)

whereuP®{r,z,t)=0P*{(r,z)e'“' denotes the radial displacement 2(1-v)(1+ 2i§p/\/1—4§§)—(1—2v)(1+2i§s/\/1—4§§)
in the padding. If the normal streg$2%is further assumed to be (1)
known, (5) can be solved for the radial displacement field as | gealing with the media with less pronounced intrinsic dissipa-
r 1 tion so thaté;<1 andé;<1, the square-root terms {d1) may be
Gfad(r,z)= =Ci(2)+=Cyx(2) dropped leading to the commonly used expressions for the com-
2 r plex isotropic viscoelastic modu(e.g.,[5]).

ve 1 (7 —h<z<0 For the time-harmonic problem of interest, cylindrical compo-
5 f D39 7)d, a<r<a (6) nents of the displacement and stress fields in the half-space can be
Hp ag 0 ' conveniently expressed as

uj(r,z,t)=0;(r,z)€''=au;(r,z)e'", — o0 =20 1
oi(r.zt)=au(r,20e'=p* oy (re, " ~a” > T a (12)

respectively, wherg,k=r,6,z. With such definitions, it can be * 5

shown by means of11) and the elastodynamic solution in Pak Uz(f_|0)=f QORI (rH)dE, (13)
[18] that the vertical displacement on the surface of a homoge- 0

neous viscoelastic half-space due to an arbitrary normal surface

load o,(r,0) permits the integral representation whereJ, denotes the Bessel function of order zero, and
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“o © whereg is a functional of the contact streésr,0) as given by
R (Z)Zj ro,A1,0)Jo(rg)dr, (14) (10p) and (17c). With the aid of(19) and the Hankel inversion
0 theorem,(20) can be reversed via

is th_e zgroth-order Hankel transform of the normalized surface A+ph (1
tractiono,,. In (13), RO(7)=— T®(7)Jo(70)d7, ¢=0. (21)

ahp* ag/a
KN -k
(15) By virtue of (10a), (20), and(21), it can be shown that the system

(202-K3)2— 40N 22— KN 22— K2 og triple ingagk_ra(leq.(19) leads to a Fredholm integral equation of
the second kin

1 a
© N ot e (T —Af KOO (ndr=1, —<r=1, (22
kSI aw ,u—*, kp: m ks (16) (_) agla CT) (T) T ’ a ' ( )

denote the dimensionless shear and compressional wave numbérsre
in the half-space, respectively.

Q=

where

2 app
A= T=vp ™ (23)
3 Mathematical Analysis of the Annular Load Trans-
fer
On account of the premises and results derived in Section 2, the
boundary conditions for the elastic buffer that are relevant to the
interaction problem can be expressed as

00qr,—(h7))=A,

denotes the Fredholm integral parameter, and

Q

0

K(f_.T)=TJO ‘Q(§)Jo(r_§)30(T§)d§, <r,r<1. (24)

|

To expose the physical meaning &f it is useful to recalli) the
one-dimensional axial stiffness of a solid cylindrical column

Ggad(rlo—): 0,(r,00), a,<r<a, 17) (ao_/a:_ 0) _with Young'’s moduzlusEp: 2,u_,_3(1+ vp) and he_igh1h
which is given bySp=Ep(7a“)/h, and(ii) the normal stiffness
&E‘;‘d(r)=&zz(r,0+), S=4pal(l—v) of an elastic half-space with shear modulus

and Poisson’s ratie under the action of a rigid circular punch of

where(, and -, denote the axial displacement and stress in thggiysa ([19]). With such definitions, Fredholm integral param-
half-space as examined earlier, afidc) synthesizes the normal gter (23) can be recast as

stress conditions on both terminal sections of the padding. By

virtue of (9), (17), and the frictionless contact assumption, the s 41— 4¢2

boundary conditions on the surface of the semi-infinite medium ==r s , (25)

can be written as S | m(1-v)(1—13)(J1—4£2+2i¢)
U,(r,00=A+(ad,{r,00+B)h, aps<r<a, which clearly identifies\ as a stiffness ratio between the padding

and the half-space.

TAr,0=0, r<a, r>a, (18) For an in-depth study of the load-transfer problem, it is useful
&,(r,00=0, r=0, to observe the asymptotic behavior (@5) given by
with the superscript 4" dropped in view of the continuity ofi, lim Q) =v*—-1, (26)
anda,, in the half-space. (==

On the basis 0f13), (14) and the theory of Hankel transforms, . ) . , . .
mixed boundary conditiong18) constituting the load-transfer Which, combined with the respective asymptotic expansions of

problem can be conveniently recast in a dimensionless form a$@ssel functions in24), reveals a logarithmic singularity of the
set of triple integral equations kernel K(r,7) in the limit as|r—7|—0. To pursue a rigorous

solution to(22) under such circumstances, it is useful to extract

* aQ(d) | . A+Bh a, __ the singular part of the Fredholm kernel and integrate it in closed
fo [1— ahut §WO(§)Jo(f_§)d§:—W1 gos <L form so that
" 50 — 2 KED =% 1) ——Fo| = Vi [ Traco
J;) {R(0)Io(rgHdg=0, 0<r<;y (19) R a+n O\T+n? " o ¢
o ag __
JO IR0 I(TO)dE=0, T>1, = (" =1)}Jo(rd)Jo(r)d¢, ;0$r17§11 (27)

tractions on the half-space outside the loaded zone. On account of12b), (14), and(20), the contact stress distribu-

3.1 Reduction of Triple Integral Equations. The treatment tion between the annular buffer and the half-space can be evalu-
of the governing triplet of integral equations can be facilitated bgted directly in terms of the solution to the Fredholm integral

introducing an auxiliary functio (1) such that equation via
A+ Bh . _ r A+ Bh
- e qm:ﬁ) FOI[Dd, T=0,  (20) &Zz(r,o):yq,<5), ™
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which implies thatb (r) has a physical meaning of the normalizedvith H denoting the Heaviside function. On the basi<28), the
contact load. A careful examination ¢£0) and (28) also reveals governing integral Eq(22) can be converted into a system of
that y depends on the mean value @f over the contact area linear algebraic equations

through the relationship

n
1
Avpd > 5i,-—Af K, ng(ndr|®,=1, i=12,...n,
B=r7""T""+, =1 ag/a
h(a—vp(a+¢)) (35)
—vp(1—vp)a? 1 for the nodal valued; . Here, d;; denotes the Kronecker delta,
@ (7)d7. (29) s given by(23), andK stands for the Fredholm kernel function

T o1+ a?-a?
we(1tve)(@=a5) Jayra evaluated Via27).

It is important to note tha® and ¢ do not depend on the vibration Apart from revealing the contact stress distribution between the

amplitudeA, thus rendering the linearity of the solution (288) padding and the semi-infinite solid througB8) and (33), the

explicit. nodal valuesp; of the piecewise-linear approximation can also be
To cater for engineering applications where the induced surfageed as a basis for evaluation of the surface deflections in a half-

deflections are often used as an input to the back-calculationsgface via

ground properties, integral representation of the vertical displace-

NS . n 1
mentd,(r,0) on the surface of a semi-infinite solid due to a buff- a _ay _ ]
ered annular punch can be derived fr¢b2a), (13), and(21) in 0z(r,0) * Z‘ ®; ao,aL(r_’T) ¢i(ndr,  r=0, (36)
the form of ) )
) with L(r,7) given by(31).
~ ay
uz(r,O)zlu—*f / L(r,n)®(7n)d7, r=0, (30) 5 Results
ag/a
h By means of the foregoing mathematical analysis and compu-
where tational scheme, the dynamic response of a half-space due to a
% . a, padded annular punch can be evaluated numerically. In what fol-
L(r,n)= Tf Q(0)Io(TY)Ig(70)dE, T=0, —<r=<1. lows, a set of illustrative results is presented with the typical val-
0 a ues ofay/a taken as 0.1 and 0.8 to provide benchmarks for the

(31) existing nondestructive testing configuratiofi$1,12). To bring

As can be seen frort24) and (31), L(r,7) is the continuationof Fhe results into a self-similar format, the dimensionless frequency
K(T,7) over the strig 0,+%) X [a,/a,1] which indicates that the IS taken as
asymptotic decompositiof27) can be employed for the evalua-
tion of L(r,7) as well. o= wa\ﬁ. (37)
In Fig. 2, the static contact stress distribution between the pad-
4 Computational Treatment ded annulus withag/a=0.1 aljd an elas_tic half-space is_ plotted
for several values of the stiffness ratih. From the display
For numerical purposes, the solution to the Fredholm integrahereinp denotes the average contact stress, it is apparent that the
Eq. (22) is sought via the collocation method with linear interpostress distribution varies from being nearly uniform to having pro-
lation functions. To effectively deal with possible stress concemounced edge concentrations with the increasing stiffness ratio. A
trations along the edges of the annular contact area, an opgfse agreement between the resultfor 10° and the static ana-

ended discretization scheme lytical solution for the rigid annulus([21]) should also be
a observed.
—0<r_1<r_2<-~-<r_n_1<r_n< 1, (32) The next example illustrates the dynamic response of a mass-

less rigid ring withay/a=0.8 vibrating on a semi-infinite solid
is selected where;(j=1,2, ...n) denotes the radial coordinateWith »=1/3. The resulting dynamic compliance

of the jth collocation point. Upon introducing the set of auxiliary a
constants via; =ag/a, s,=r(1<k<n), ands,=1, an approxi- Cop(w)= = F= —2wf ro,{r,0)dr, (38)
mate solution to the Fredholm integral equation can be expressed ag
as whereF denotes the resultant contact load is plotted in Fig. 3 for
n a the respective cases of zero and nonzero damping. In the figure,
- o _ ! - o S 30
cp(ﬂ:lzl @), == =1 (33) the action of a rigid annulus is simulated by assunfifig=10"
where®;=®(T;), and 30 o
T—Te; o S A=10"
(M =HT—s PHI—T)=—=—+H({—T1)) —— A= v=1/3
M= TMe—1 AL
0. 2.0 A=10
_ _ = 5 0=0
wH(s A M1 T Qs +A=10
k1™ D T ~3 —— Rigid (E 1965
Mkr1™ Tk ST ) S— ' .gi__(__gio_rf)_v._.:_)/ =
k=23,...n—-1,  gm—=———==—m T T
_ 03 aja=0.1
r,—r 00 e o
YN =H(T=s)H(r— T =, 01 02 03 04 05 06 07 08 09 10
2 1 r/a
=T,
lﬂn:H(r_—r_n—l)H(Sn—ﬂ———nl' (34) Fig. 2 Static contact stress distribution: effect of padding
Mh=rn-1 stiffness
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Fig. 7 Out-of-phase components of the surface motion

for the composite model, showing a reasonable agreement with
the elastodynamic boundary element solution in Veletsos and Tang
[4].

Figure 4 highlights the effects of the padded annulus-half-space
interaction on the amplitude of axial surface displacemé&a@s
with | A|= 30 denoting a value commonly encountered in dynamic
site characterization. From the display, it is evident that the uni-
form contact-pressure assumption which is normally employed to
interpret the field data may lead to significant errors in the analy-
sis of dynamic center deflections for moderate to high values of
For engineering purposes, the interaction effects are further syn-
thesized in Fig. 5 where the amplitude of the center deflection
0,(0,0) atw=1 as forecast by30) is normalized by the approxi-
mate predictiorii;(0,0) which assumes theniform contact stress
distribution

2 a
&;z(r,O)=Tc2))f 70,4 7,00dr=const.,, ap<r=a,
ap

(a?
(39)

between the annulus and the half-space. As expected, an error
introduced by the uniform contact-stress assumption amplifies
with diminishing ratioay/a and increasing\. It should also be
noted thatw=1 corresponds to a vibration frequency of approxi-
mately 100 Hz in a typical field test of an unpaved subgrade.
From numerical simulations, it was found that the interaction ef-
fects generally become more pronounced with increasing

To provide a more complete picture of the dynamic half-space
response, Figs. 6 and 7 show the variation of the respective real
and imaginary components of the vertical surface displacement
0,(r,0) at several frequencies of interest. A direct comparison of
the in and out-of-phase profilesat= 1 with Fig. 4 further reveals
that the deflection amplitude profile, notwithstanding its useful-
ness as a tool for engineering interpretations, does not clearly
convey the dynamic nature of the problem.

6 Summary

In this communication, a mathematical model is presented for
the axial vibration of a padded annulus on the surface of a homo-
geneous viscoelastic half-space. By virtue of the Hankel integral
transform, the problem is formulated as a set of triple integral
equations which are reducible to a Fredholm integral equation of
the second kind. In the formulation, the padding is assumed to
furnish a one-dimensional load transfer from the rigid annulus to
an underlying half-space via a plane stress-type hypothesis. It is
shown that the contact stress between the padded annulus and the
supporting semi-infinite medium may deviate significantly from
the uniform pressure distribution commonly assumed in the inter-
pretation of dynamic field measurements involving buffered annu-
lar loading systems. Beyond providing an in-depth understanding
of the mechanics of the composite annulus-half-space interaction,
the proposed dynamic solution can also be used as an effective
approximation to the corresponding rigid-punch problem for
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This paper shows that in the use of Lie groups for the study of the relative motion of rigid
bodies some assumptions are not explicitly stated. A commutation diagram is shown
which points out the “reference problem” and its simplification to the usual Lie group
approach under certain conditions which are made expli¢idOl: 10.1115/1.1409937

1 Introduction shown which explains the basic contribution of this paper. In Sec-

There are two main ways to describe rigid bodies motiongpn 4 the hypothesis which bring to the standard Lie groups are

screw theory based on the original work of Bfdll and then used hnounced.

by Lipkin [2—4] and Lie groups theor{[5,6]), which is used for

kinematics in[7]. These two have been recently formally relate@ Euclidean Systems and Configurations
in [8]. The reader is also addressed to the excellent L@k

h i ¢ lated to L bal The concept of an observer is very important and is coupled to
where among others, screw systems are related to Lie su agebﬂ?@'concept of space: an observer is identified with a Euclidean

tln the Lig ggoqu?ﬁp'Eaclhd the :)hasic_j_tarting_ poi?t is the ishc_) bgce in WhiCh he is rigidly gonnec‘ged toggther w!th all those
etry groupSE(3) of the Euclidean three-dimensional space whic bjects which are always stationary in relation to him. A set of

can be used to describe motions. Here, WiB(3) it is NOT objects which are never changing position in relation to one an-

meant the set of homogeneou_s matrices Wh'(.:h are °°mm°“'y USffer can be considered as a single entity from a kinematic point
in robotics, but the abstract Lie group of positive isometries of alk view

Eucllde_an space. . For these reasons and for more formal ones that should become

In this setting, twists are seen as elements of the Lie algela i the sequel, we consider as many Euclidean spaces as there
s¢(3) which correspond to the Lie grolpE(3). Wrenches are oo 1y gieg moving relative to one another. An object will be a
instead defined as elements O.f th? dualsé(3) which IS _|nd|- subset of a Euclidean space together with a mass density function
cated ase* (3). Unfortunately, in this approach, the position of &y hich associates a value to each of the body’s points. The mass
rigid body is identified by an element &E(3) after a reference yengity function is relevant for dynamic considerations. For kine-
position for the body has been chosen the choice of which is NQifatic considerations, it is sufficient to define a proper bBggps
intrinsic. Furthermore, almost everywhere, a framework with cg; g bset of a Euclidean spaeinstead.

ordinates is used where usually the notat®i(3) is NOT used ~ once we have defined the geometry of bodies and spaces, we
for the abstract Lie group of positive isometries of the three disy introduce time as an absotutealar variable.

mensional space, but instead for the set of Lie group of homogeye can start by giving a formal definition of an Euclidean
neous matrices of the form

space:
R p DerFINITION 1. (Euclidean Spage An n-dimensional Euclidean
0 1 Space & is a triple (M;,0;,Q;) where (M;,g;) is an

n-dimensional manifold with Riemannian metricwghich is iso-

whereR is an orthonormal matrix representing a rotation aral metric toR" with Riemannian metri¢,), whose matrix in standard
translation vector, from the very start. This happens also in tigeordinates(xy, ... Xp) is & ;. In other words there is a diffeo-
excellent book of Murray et aJ7] and hides simple but important morphisme:M;—R" such thate*(,)=g; . Q; is a nonzero vol-
hypotheses which are clear in a coordinate free framewodme n-form on Mand w is dx, 0. ..Odx,. It is also assumed
instead. that ¢ is orientation preserving, that jsp* w=Q; .

Only in [10,17] is the importance and necessity of a NOT in-
trinsic reference presented.

In this article we try to make all the assumptions explicit ifPEFINITION 2. (Euclidean Systejn The ordered set of m,
order to built a clear and formally correct framework. After &-dimensional Euclidean oriented manifalds

We can now define what we will call a Euclidean system.

coordinate-free treatment, coordinates will be added and explicit S(n):={&;,E £
assumptions will be made. This article is of a fundamental nature ez m
and therefore suited for a mathematical-oriented reader. is called aEuclidean system of dimensignand ordem. We use

For more general treatments on kinematic issues, the readethie Euclidean system as the basic structure to consider relative
addressed t012] and[9]. For a very nice treatment and classifi-notions. All the material which will be treated will be general and
cation using Lie groups of motions, the reader is addressegplicable ton dimensions. Clearly in three-dimensional mechan-
to [13]. ics, we will haven= 3. The numbem corresponds to the number

In Section 2 the basic definitions are reported. In Section 3 tloé objects and/or observers we consider in our study of motion.
definition of twists is reported and a commutation diagram is To understand the concepts intuitively, we consider the two-

dimensional Euclidean syste®(2) of Fig. 1. We use a two-
dimensional example for simplicity and to illustrate some con-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  cepts which will be introduced later. We can consider each of the

MECHANICAL ENGINEERSor publication in the ASME QURNAL OF APPLIED ME- H infini i i
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 19,EUC|Idean spaces as sheets of paper of infinite extension which
2000; final revision, Apr. 25, 2001. Editor: R. C. Benson. Discussion on the paper—

should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Me-

chanical Engineering, University of Houston, Houston, TX 77204-4792, and will be ‘The fact that we will consider time as an absolute is a consequence of the
accepted until four months after final publication of the paper itself in the ASMElassical separation in mechanics of space and time, which is due to the Galilean
JOURNAL OF APPLIED MECHANICS. hypothesis.
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L .' £, 7
can be placed on one another. In the figures, the sheets are dr. . L

as finite rectangles for the sake of clarity, but should be thought R V4

as having an infinite extension. 7
The following definition is necessary to understand relative ) .

positions: Fig. 2 Maps between Euclidean spaces

DeriniTION 3. (Positive Isometry A positive (or orientation

preserving) isometry h&—¢&; is a diffeomorphism such that

(hf)*ngQi and (h;)*gjzgi . The set of all such isometries is€ach of_ the other spaces. In th_e example “the association” is the
indicated with SE(n) when i#j and SE(n) when i=j. one which assigns to all the points of one sheet_the corresponding

Two considerations are now important. points undemeath on another _sh_eet. This map is represented by a

First of all, the setSE(n) corresponds to the set of positivep(?s't'vely oriented isometry. It is important at this point to reason
isometries of a Euclidean space which is usually indicated Jdthout any use of coordinates because it enables us to define
SE(n). The extra index is used to discriminate befween positi\fé“'t'es which are intrinsic. We can now defin&iaematic state
isometries of different Euclidean spaces. It can be found on aBgriNITION 5. (Kinematic State We call a kinematic state for
book on Lie groups like[6]) that SE(n) is indeed a Lie group. a Euclidean system™$n) a point
We will indicate withseg(n):=T,SE(n) the Lie algebra corre-
sponding to the Lie grciJ(ﬁ)E(n)e.' = ’ h:=(h3,h3, ... hR™Y) e SE(n) X SEj(n)x ... XSER .

Second, it is possible to see tHaE(n) is indeed a finite di-  Most of the euclidean spaces belongingSf{n) will represent
mensional smooth manifold. This can be seen by taking any gysical bodies. These spaces have a subsets of pBjais;
thonormal reference fram@; fixed in & and any orthonormal where matter is present. This d&tis called thematter setand it
frame | fixed in ;. Doing so, it is possible to see thaE (n) is ~ corresponds to the Euclidean spafe
diffeomorphic to the matrix Lie group of homogeneous matrices We say that a Euclidean space3f(n) is apure observeiff its
and thereforée(n) is indeed a manifold. matter set is the empty set. In the working example, th@sgetill

To improve intuition clarity, we could consider the orientatior?€ the set of points where the hammer B, where the screw
writing the name of the Euclidean space on each of the skeegs driver is andB; where the spanner is. These are sets in two-
Fig. 2. It is then possible to see that in Fig. @% is a positive dimensional Euclldean spaces. In the examp!es there are no pure
isometry and this can be seen by shifting the two sheets of paﬁ SErvers \.Nh'Ch could be thought of as addltl_onal _sheets_wnh no
so that the two hammers coincide, as reported bottom left in tRRjects on it. We can now talk about a compatible kinematic state.

figure. Furthermoreh? is still an isometry but it is not positive DEFINITION 6. (Compatible Kinematic State We will say that a
since we must first turn over the sheet before all the points of okgematic state h as defined in Definition 5 is compatible iff
sheet correspond to those on the other sheet. This is reporltéCBi)ﬂBj:QViséj i,j=1,...m.
bottom right of the figure. The last mappinig;, is not even an  The previous definition can be used to describe object impen-
isometry since it changes distances between points and there iti@bility. This is the simplest and most basic constraint which has
way to place the two sheets so that the points on one will corr@ be satisfied at this stage: Rigid objects will not penetrate one
spond to the points on the other. another
. - - - : The idea of compatibility of state is illustrated in Fig. 3. The
DerINTION 4. (Relative Position An element he SB(n) is  rg|ative position off, and&, does not create any problem for the
called a relative position of; with respect tofj. .. _kinematic state compatibility, but the relative positionfgfand&,

It is important to reflect a moment on the previous definitionsg ot compatible since it maps points of an object belonging to

Observers and/or objects are associated to a Euclidean spacgn® space to points of another object of another space. Remember
which they are rigidly connected. We can think of all these spaces

as interpenetrating. In the example, this “interpenetration” can be——
understood by considering how the sheets overlap. In each instanty, reality, when bodies will contact each other, they will slightly deflect and
all the points of one of the spaces, will have associated points @merate an elastic force which will oppose the compenetration.
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Y the right hybrid map can be used to create a bijection between

f,/”r ' SE(n) andSEj(n). Remember thaBE(n) represents the space
of relative positions of andj independent on any relative refer-
i : ence position. Then it is possible to consider how the correspond-

p"" 3 =| ing representations iBE(n) andSE(n) are related given a ref-

\,51 — & £ erence relative positiorh!. This is done using the hybrid

£y conjugation map.

DEeFINITION 8. (Hybrid Conjugation Map We will call the map

Fig. 3 Compatibility of the kinematic state Khij==Rr:leh=', hybrid conjugation map for the pair of spaces

(&.,&) in hle SE(n). This map can be expressed as

that, in the example, the previously considered map, corresponds Kh;'iSEa(n)HSEj(n);hith oh o (h)*
to the one which maps points of one sh@&iclidean spagedo the
points underneath on another sheet. With respect to the previous definitions of hybrid right, left and

Here a remark is in place: At first glance the presented frameenjugation maps, it is important to note that if the domain and
work would seem unnecessarily theoretical and formal. Neverth@nge spaces coincidéhey are the same Euclidean spadbese
less, such an approach is not just fundamentally meaningful, bnaps become endomorphisms and correspond to the standard Lie
could be used as the basis for implementing computer tools for theoup maps on a special isometry gro{if]).
analysis of mechanisms. To be able to describe a mechanism, ark 1 (Swap Domain-Range If in the previous definition

need to have formal and exact ways to represent information apd \ould swap the domain space with the ranige {), the result
the definitions proposed here help to give such a structure. is thatr —r~%, h—h~! and the right maps would c'orrespond to

_ We can now define the corresponding left, right, and conjugg, previous left maps and so on. This can be formally stated as
tion maps between two spaces. Note that if the spaces are di Mows:

ent, these operations are neither endomorphisms nor group opera-

tions. This is why we use the adjective “hybrid” for the following (Lgl(r))’l:(h’l onl=tr1to h):R—ll(r,l)
(h™%)

definitions.

DEFINITION 7. (Hybrid Right and Left Maps We call wherer,h e SE(n) and the previous elements are all belonging to
Ru:SE(n)—SE(n);hj—h; o h| SE(n), or dually,

the right hybrid map for the pair of space& &) at hf (L(;l—l)(rfl))ﬂ:(h o rHt=(r o h"H=R, Y1)

e SE(n) and

) ) wherer ,he SEii(n) and the previous elements are all belonging to
Ln:SE(n)—SE(n);hi—h! o b SE(n).
. ) ) This remark has important implications when twists are
the left hybrid map for the pair of space &) at hl  introduced.

eSHE(n). It can be easily verified thd(hij(ei):ej\?’h{ e SE(n), where

The “0” indicates the composition of maps. The left hybrid mage, e SE(n) is the identity element of the grou®E(n). We can
can be used to create a bijection betw&d(n) andSE(n) and consider the tangent map &fh{':

(Knj)x :TSE(N)—TSE(n); (h; v )~ hl o h o (h{)*l,%(hé o eih; o (h)) Y

) 1)
t=0

where with e’ith; we used the usual exponential mgg]) to thermore, if the domain and range spaceAcn‘h{' coincide, the

consider a curve inSE(n) parameterized byt and passing hybrid adjoint corresponds to the usual adjoint group operation
thrc_nugh h; at tlr_net=_0_ with velocity v; . It is now possible to ([g)).
define the hybrid adjoint. We can associate an elementS¥ (n) or SE(n) to a relative

DerINITION 9. (Hybrid Adjoint) We call hybrid adjoint from cition ofi with respect td corresponding to &l € SE(n) usin
space sf{n) to space sgn) the following map 2 reference] eSEi‘(rF:)' 9 P g 1= SEM) g
. :

Adp:sg(n)—sg(n);ti—II((Kyi). (€ ,t)) T
hi=L " (h)=(r)"* o h (2)

wherell(-) indicates the fiber projectiofi14]), which in this case

corresponds to the tangent space ip, ¢he identity element of 1 ) _—

SE(n). hj=R (hh=hi o (r)™ ®3)

It is important to note thaseg(n) andseg(n) are NOT the same

and that there is no natural identification for these algebfas-  Remark 2 Note that the identification of a relative position by an

element ofSE(n) or an element o8E(n) is NOT intrinsic and
3 . depends on the choice of a reference relative positiorThis is

The vector spacese (n) andsg(n) are algebras since they have a commutator . . .

operator derived from the Lie Bracket of vector fields 8g(n) and SE(n). For often not stated in the literature, even though the use of Lie group

details sed5]. theory for rigid body motions description depends on it!
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3 Twists Since relative motions are differentiable, we can consider the

So far we have considered relative positions without introdud€!0City vector of the curve i} which we indicate as
ing motion. The latter is clearly a change of relative position. To
be able to talk about change, we need to consider a timé set N )
which will be an open interval ok. We can then consider curves h! e TRiSE(n).
in SE(n) parameterized bye . '
DerFINITION 10. (Relative Motion We call a differentiable N )
function of the following forth The elementh! which is also indicated as! is called relative
P i velocity inh!.
hi:I—~SE(n) Considerilng Eq(2) (respectively Eq{(3)) we can map these
a relative motion of spacé; with respect tcf; where | is a close relative motion velocities to elements of the tangent bundle
interval of R. TSE(n) (respectively,TSE(n)):

-1 ‘ (i ~1iy ) 1ol
(L, :TSE(nN)—=TSE(n):(h! ,v))—| L (hi),a (L,i"(e""hi))) (4)
| I I t:O

where Withtﬁevijthf' we indicate any curve itSE((n) passing 10 calculate the left translation at the identity df; (v;), we

throughh§ at timet=0 with velocity v{ . An analogous map can have, therefore
be used to map td SE(n) using the hybrid right translation.

. d .. ~

i, - Cv))= =—((h! ! _
Remark 3 (Inverse Mapping It is important to realize that G =1Ly, D (N vi))= dt((hJ(O) 0 hj(t)li-o-
each hl:I—-SH(n) is biective to a hj:I—SE(n); ®)
t—(hl(t)) 1. This implies also that to each/ eThiiSE,-'(n) an O

elememh} eTthE‘j(n) will uniquely correspond. This means thatlt is possible to see that the last expression is independedt of

whenever wejwill talk about vector fields or distributions or?nd therefore defined intrinsically. We will call the last quantity
I

SE(n), we will uniquely also have corresponding vector fields o‘g_ :XS?e(ggetg‘?n'qg;nz'catW'StnOf the motion of; with respect to
distributions defined oS E (n). j Exp ne sp ﬁ@( ) _

So far, we have shown a way to map relative velocities to l\_lote_ th_e notation: Irt; the s_ubscrlp_t an_d th? Seco'ﬁ?‘ super-
elements ofTSE(n) or TSE(n). Both of these maps are not Script indicate the relative motion, which in this casei iwith

intrinsic since they depend on a choice of a reference relati{@SPect tg. The first superscript indicates in which algebra this

position rl. These elements belong to tangent bundles of Llnemtlon Is expressed, which in this casesig(n). The reader

groups and therefore it is meaningful to transport these tang ﬁ)tUId be tempted to say tha is the twist that an observer sitting

: i : ; & would observe. This is NOT the case as can be seen in the
;/rzzt;;iécr)l;{]é)group identities by means of either left or rlgrﬁ:lPommutation diagram of Fig. 4: An observer sitting éh and

looking to a pointp; fixed in &, would observe exactly the op-
posite motion to the one described. To understand this consider
that the observe€; for whom the time increases would see a

) motion corresponding to a mapping from(0) to p;(t) with t

in TSE(n) of the relative motion of; with respect taf; in the >0 which has a direction opposite to the one reported in Fig. 4
relative positionh! with a relative velocityv!. We can transport and corresponds tdw{(O)oh{(t)).

this tangent vector te;, the identity element o8 E(n) either by If instead of left translating to the identity we right translate, we
left or right translation. An important result is the following: do NOT get a quantity that is intrinsically defined. This is for-
dmaIIy stated below:

3.1 Transports to the Identity of the Domain Lie Group.
Consider the elemenﬂ_(jl)*(hf ,v!) which is the representative

THEOREM 1. The left translation to the identity of the left hybri
translated tangent vector representative of a relative motion, TBHEOREM 2. The right translation to the identity of the left hy-
defined intrinsically and independent of any choice of a fixed refrid translated tangent vector representative of a relative motion

erence {. is NOT intrinsically defined and is equal to
Proof. Consider an elemenh(,v]) e T, SE(n). Consider a rela-
tive motion
hl:[-a,a]—SE(n) & _ &;
with a>0 and such thah!(0)=h! and @/dt)(hi(t))|—o=0v. 75(0)
Defining 2:(0) ./—\\ ° pj

(hi o) =(L Y, (hl o))

it is possible to see tha;=T;(0) and v;=(d/dt)(hi(1))];=o
whereh(t) =L, (Rl(1)).

pi(t) © R (t)
“Note the abuse of notation hetg: has been used both as an elemers ﬂ‘(n)
and as a function from to SE(n). Fig. 4 Commutation diagram of the intrinsic left translations
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& & THEOREM 5. (Map Between Intrinsic Twisjs For any relative
h§(0) position H, a bijection exists between the intrinsic twists in

D; sg(n) and the ones in 5€n). This map is given by
® o PJ(O) t] zAdh{ti" .
Adhij is to the hybrid adjoint of Definition 9.

The thick cross-hatched lines show the intrinsic maps to and
between the Lie algebras of the Lie groups of the motions of the
two spaces under consideration. Only those twists are intrinsic and

hi(t) ® (%) independent of the referencé which are obtained by following
. o o ] the maps to the circledg andse .
Fig. 5 Commutation diagram of the intrinsic right translations Furthermore, it has been shown that the standard adjoint maps

within the Lie algebras of the two spaces are not maps between
intrinsically defined quantities. This means that in a coordinate
free framework, it is not correct to say that the adjoint group

Ti=Ad.ith] : ; X
i Adf;t' operation maps twists from one reference to the other since one of
where the two elements is not intrinsic and dependent on the reference
d rl. We denoted these nonintrinsic elements witrandt; .
tf’j=:a((ﬁ{(t)oﬁ}(0))) . (6) 3.3 Relations Between Twists. It is possible to see that the

t=0 complete right translation is somehow more representative than
We will indicate with the simplified notatioti —tll when the two the left one since it gives the motion &f that an observer sitting
superscripts coincide. ' in & would observe directly. From the considerations of Fig. 4

) o . . ) and Fig. 5, it should be clear that
Proof. With similar definitions as in the previous theorem, we

show that

) =TI((Ry-) (hy o) = - ..

od o
tl=g; (Rl()OR(0)))
t=0

represents the motion &f for an observer sitting ig; . In exactly
—Adjt] @ the same way, namely by inverting the domain and range space as
i

d - . .
= 'oh! ! J
dt ((rJOh'(t)OhJ(O)Or')) explained in Remark 1, we could arrive at the definition of

t=0 O 4 _
tj=g; ((hj(Hoh}(0)))

3.2 Transports to the Identity of the Range Lie Group.
Like we did in the previous subsection, we can first use the hybrid
right translation to map relative motions & (n), and then Lie which would correspond again to the right translation to the iden-
group right of left translations withi§ E;(n) to map to the iden- tity of the right hybrid translated tangent vector of a motion, but
tity. The following two theorems then correspond to the previouow in the opposite direction: for the isometries fréinto & .
ones. A representation of the two intrinsic right translated twitfts

THEOREM 3. The right translation to the identity of the right andt} is shown in Fig. 6. It is possible to see that the direction of
hybrid translated tangent vector representative of a relative mé3 is opposite to that one @}. This relation can be formally stated
tion, is defined intrinsically, independent of any choice of refein the following theorem.

ence { and equal to t as defined in Eq. (6). THEOREM 6. (Twist Relations With the notation used previ-

Proof See proof of Theorem 1. O ously, the fO”OWing identities hald
Observing the commutation diagram of Fig. 5, we can see that i —ti= Adutii— — Adutl

the twistt] is indeed the twist that an observer sittingsinwould e P! i

observe. The diagram shows that a fixed pgint & is indeed 4pq

mapped from a poin;(0) € &; to future pointsp;(t). This means ) N _ B

that the right translation is somehow more representative. On the tj=—t'=—Adyt/=Adyt]". 9)

other hand, as a consequence of what was said in Remark 1, we ! !

could consider the isometries going frgnto i corresponding to Instead of giving a formal proof of the previous theorem, Fig. 7,

the inverse of what was done so far. This would result to a righig. 8, Fig. 9, and Fig. 10 can be used to understand the result.

translation which would give the intrinsic twisf. This will be Figures 7 and 8 represent the right translated relative motion in
discussed in detail later. the two directions and the bottom ones are the left translated.

If instead of right translating to the identity we left translate, w&igures 7 and 9 correspond to the intrinsic mm#_swhich is also

do NOT get an intrinsically defined quantity. This is formall . ) i . . .
stated in \?vhat follows: y q 4 ydenoted WlthTrhij (Fig. 7 and w'h{- (Fig. 9 of Fig. 11 and Figs. 8

THEOREM 4. The left translation to the identity of the right hy-and 10 correspond to the intrinsic map:,ﬁ.'_ (Fig. 8 and 7Tjh‘. (Fig.
brid translated tangent vector representative of a relative motiopo) of a diagram similar to Fig. 11, but rjlow the considéred isom-
is NOT defined intrinsically and is equal to etries would belong t<SE|"-(n) instead ofSE (n).

t/=Ad,t!.

t=0

Proof. See proof of Theorem 2. | . e .
In a similar way, it is also possible to find an intrinsic mappingj1r The Simplification to Lie Groups

which maps intrinsic twists of one space to the other. This is In Section 3, we have worked in a coordinate-free manner. If
formally stated in the following theorem which can be proveme introduce coordinates, we can identify certain operations using
along the same lines as the previous ones. a matrix algebra. We will see that an intelligent choice of the
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i} = & (R o BT |, & #eaid)

/

=

A
2 = & () o Biton)|,_, € #eaizd

R

&

Fig. 6 Intrinsic twist maps

5,: i &;
o h3(0) 7
e e pi(0)

referencer{ dependent on the choice of the coordinates, will yield
standard Lie group operations of the matrix gr&ig(n) as pre-
sented in7].

First of all we need to define what we mean with “Cartesian
coordinates” for a Euclidean space.

) (t DerINITION 11.  (Cartesian Coordinatgs An isometry of the fol-
R (2) * p;i(t) lowing form
) . d . . \I,i :Si(n)—>ﬂ%n
Fig. 7 ti=gz(hi()°hj(0))lo
is called Cartesian coordinates or simply coordinates for a Eu-

i K0 &; clidean spacef;(n), where we consider the canonical metric in
1(0) p; R" represented by the identity matrix. We will call this Cartesian
2:(0) e coordinate right handed or positive oriented ifA\

e C”(&) s.t. N(+)>0 and ANQ;=(¥,)* (dx,0dx,0. .. Odx,),

where with(¥;)* we indicated the pullback operatof); is the

n-form orienting& and (dx,;0dx,. . .0Odx,) is the canonical
pi(t) e h}(t) n-form inR".

It is possible to show that there exists a bijection between the
set of right handed Cartesian coordinates and the set of
(n+1)-tupels of the form {,e;,e,, ...,e,) where peé e
eT,& and such thagy(e; ,e)=4Vi,j=1,...n whered is
& i & the Kronecker symbol ang, is the metric of the Euclidean space

hj(O) in the pointp. The vectore,, . .. e, attached t@ would be the
pi(O) ./\. Dj usual base frame which can be used to express vectors.

cd
Fig. 8 tj=g(hj(D°hi(0)]o

pit) 0

d .
Fig. 9 ti/=gz(hj(0)=hi(1)lo

& Hoy B
P g e pi(0)
R (2) * p;(?)

d
Fig. 10 t)'=gz(h(0)°hi(t)]o

Fig. 11 The complete commutation diagram
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4.1 Isometries inR". The positively oriented motions iR" sei(n)
will be essential to what follows. It is well known that this set is

homeomorphic to the special isometries matrix groBif(n) (Lg-1),
which is defined in the following way:
R
SEn):= 0 1 s.t. ReSQ(n),peR" (10)
where withSO(n) we indicate the special orthonormal group of Adg TuSE(n)
orthonormal matrices defined as
SQn):={ReR™" s.t. de{R)=1R !=RT}. (11)
We see that the operatign=h(x) for a positive isometrjh from v (Re-1).
R" to itself corresponds to a matrix multiplication of the form:
7)-(F p) . sej(n)
1 0 1/\1 Fig. 12 The Lie group commutation diagram

where the matrix belongs t8E(n). This representation of points

of R" by means of vectors ok"*?* is the concept on which pro- .
jective geometry([15]) is based. In this framework, elements ofProof. The proof follows in a straightforward manner whei ~*
SE(n) can be seen as projective transformations which are algdbdH ~*H are written out as matrices of the form in EG0) and
called homographies or collineations. These are all concepts oftbe previous theorem is used. O

used in screw theory{8]). Since the dimension of the vector space of antisymmetric matrices
belonging toR™*" is n(n—1)/2 for the three-dimensional case,
we can associate a three-dimensional vegido the matrix() in

Eq. (14) such thatwOx=0Qx ¥x eR®. The six-dimensional vec-
tor (w,v) can therefore be considered to be the numerical repre-
sentation of the intrinsic twist for the chosen coordinatgsand

W, . These are closely related to tRéicker coordinatesn screw

4.2 Representation of Relative Positions With Coordi-
nates. Suppose we associate with eaéhe S™(n) a right-
handed coordinate fram#;. We can, therefore, assign an ele
ment of H e SE(n) to each elemenh! e SE(n) which corre-

sponds to the following isometry df": theory ([3, 8)).
Hi=¥; o hl o ¥ " (12) 4.4 The Link With Standard Lie Groups. It is now
possible to link the presented material to the standard Lie group

The element! is an element oS E(n) because it is defined as a
composition of positively oriented isometries and it is therefore _
positively oriented isometry oR". Note thatH! is actually a ¢ THEOREMO. If we choose as referencé=W; * oW;, with the
+1)% (n+1) matrix which can therefore be used as a linear magoordinate functionst’ k=1,...n then Ad,j, Ad;i will be repre-

ping from (n+1)-tuples to (+1)-tuples. From now on we will sented by the identity, and all the maps on the right side of the
consider all thesen(+1)-tuple as having the last component thagliagram in Fig. 11 will have the same representations as the sym-
is equal to 1. With the previous abuse of notation it is then pometrically corresponding maps on the left.

sible to consideH! as a mapping fronk" to R".

ag)proach.

Proof. Can be shown by using a representation with coordiridtes.
4.3 Coordinates to Represent Twists. When looking at the Nte that the choice af{:\yfl 0¥, has a very straightforward

expressions fot] , tiy ti), andt]’, we can see straightaway that.explanation: We consider as a reference relative position that po-

by applying Eq.(12), their matrix representation becomes sition in which the coordinate framep €, , . . . ,€,), Which are
i i i T i then vectorsey, . . . e, attached t@ and represent the Cartesian
Ti=H{H; Tj=H;H] Ti'=H;H{ T;"=HiH;. (13)  coordinates¥; and¥;, coincide. This choice is useful for prac-

What will be the form of these matrices? This question can t?@e but NOT i_nt_r_insic an_d depe_r}ds on the choice of coordinate
rames for an initial relative position.

easily answered when using the following well-known results. . - . . .
o ) ) By using coordinates, we achieve that the commutation dia-

THEOREM 7. (Derivatives of Orthonormal MatricesGiven an  gram of Fig. 11 “folds” its right and left parts on one another to

orthonormal matrix Re SO(n) that is a smooth function of time, give the standard Lie group commutation diagram reported in Fig.

the matrices R~ and R R are given by antisymmetric matri- 12 whereH="0 h o v l=¥oho¥ ‘=Fohow

ces of dimensio®"*". A I )

Proof. The proof follows straightaway when differentiati®R " 5 Conclusions

and RilR' . U This article has shown that behind the use of Lie groups for
Itis now possible to extend the result to elementS&{n).  rigid-body motions, there are implicit assumptions that, even if

THEOREM 8. (Derivatives of Isometries Given a matrix H more or less “natural,” are not intrinsic and just dependent on a
e SE(n) that is a smooth function of time, the matricesiH! ~ choice of relative reference between spacee Remark2
and H H are given by matrices of the following form It is always important to pinpoint those assumptions which are
not intrinsic: Any hypothesis which is not intrinsic can in fact be
Q v considered a modeling hypothesis and should be made explicit as
( 0 0o (14)  such.
Twists have been analyzed in detail and their mappings and
whereQ) e R™" is antisymmetri¢ and v € R". relations have been shown. The intrinsic mappings using right
translations are the ones which give the motion of a space with
respect to an observer space directly and have been denoted with
SNote thatQ e SQ(3). only one subscript and one superscriptor t} .
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« searden | EXPErimental Determination of K,
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USADA, GO 80840 Since the pioneering discussion by Irwin, a significant effort has been devoted to deter-

mining stress intensity factors (K) using experimental methods. Techniques have been

JW DaIIv developgd to determine stress intensity factors frorr_1 photoelas_tic, strain gage, caustics,

R and moiredata. All of these methods apply to a relatively long single-ended-edge crack.
To date, the determination of K for internal cracks that are double-ended by experimental
methods has not been addressed. This paper describes a photoelastic study of tension
panels with both central and eccentric internal cracks. The data recorded in the experi-
R. J. Sanford ments was analyzed using a new series solution for the opening-mode stress intensity

gy factor for an internal crack. The data was also analyzed using the edge-crack series
solution, which is currently employed in experimental studies. Results indicated that the
experimental methods usually provided results accurate to within three to five percent if
the series solution for the internal crack was employed in an overdeterministic numerical
analysis of the data. Comparison of experimental results using the new series for the
internal crack and the series for an edge crack showed the superiority of the new series.
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Introduction ([9)), originally developed for analysis of photoelastic data, was

When applying fracture mechanics to the analysis of the safeﬁxéenns?gl dfatgt(s)r’[sf(l[elrotiipae)rlmental techniques for measuring stress
O;?;%gttlgrissﬁcéﬂtzlsng?elzv;':t’;;: nigstso S‘rasr);rzosgﬁ::r;?';‘i;?gur%ll of the experimental methods for determining stress intensity
P . . ty . ) "A¥ors in finite bodies employ data taken from the intermediate
ses the opening mode stress intensity fadtgr, and/or the for-

. . . region defined in Fig. 1. In the intermediate region, a singular
ward shear mode stress intensity factdr,, may be determined o, 145 2 small number of higher order terms accurately de-

from existing theoretical solutions FO WeII-dgfined boundary yal ribes the stress field. Data taken from the near field, also defined
problems. quever, when theoretical _solutlons are r‘!ot availab ﬁ’Fig. 1, do not yield accurate results because of the stress field is
stress intensity factors are often obta_lned by numer_lcal "_’malyﬁﬁree-dimensionaﬂneither plane stress or plane sthain this re-
but again the structure and the material are usually idealized a@Gn ([13]). Also, if the data points are located very close to the
the loading must be known. _ crack tip, errors in measuringand @ are often excessive. Data

If the structure cannot be idealized or the nominal stresses &gm the far field are not useful because excessively large num-
not known in the region of the structure containing the craclers of terms in the general solution is required to yield accurate
experimental methods are used to deternipand/orK,, . These yegyits. Also, far-field terms are insensitiveKovalues.
experimental methods include photoelasticity, strain gages, moire gy long edge cracksingle-endey] data from the intermediate
and caustics applied to either a model or to the actual structurerdyjion provide an accurate means for determining ekher K,
method for the experimental determinationtof and oo, from  or a combination of both in the case of mixed mode loading. For
isochromatic fringe patterns was first outlined by Il in @ short edge cracks, the single-ended solution augmented with a
discussion of a paper by Wells and P2t In the years following series containing several higher order terms provides an adequate
Irwin's pioneering contribution, a number of investigatdi3-8])  approximation. For internal crackslouble-endey current prac-
extended his method to improve the accuracy of the predictiofise is to employ the same augmented single-ended solution and to
and to include the simultaneous determinatiorkefand K, and ignore the effect of the second singularity. This practice for deter-
oox. However, all of these techniques were based on a smalining the stress intensity factors data is an adequate approxima-
number of measurements of the field parametieisge order,N, tion that may be used with confidence if the internal crack is
and positiony and 6); consequently, the accuracy of the determisufficiently long. On the other hand, if the crack is sufficiently
nation of the stress intensity factors often suffered. Later, SanfasHort, it is clear that the influence of the singularity from both
and Dally[9] introduced a general method for determiniig, ends of the crack affects the stress field in the intermediate region,
K, , ando,, based on an overdeterministic analysis of data takemd consequently techniques based on the augmented near field
from a large number of points in the local neighborhood surroundguations may lead to significant errors.
ing the tip of the crack. The use of full-field data permitted a Recently, Sanford and Drudd4] published a series solution
significant improvement in the accuracy of the determination &r an internal crack giving the relations for the mode 1 stresses in
K,, K,, ando,4. The overdeterministic approach of referencéhe intermediate region. This solution, which accounts for the
stress singularities at both ends of the crack, was employed in this
study to determiné&, for both symmetric and eccentric internal

Yooy is a uniform stress in the direction of the crack, which is also referred to @racks of various lengths located in a tension panel. Photoelastic
the T-stress. methods were used to collect approximately 200 data points from
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where

CdZ(z)  d*Z(2) _dY(2)
“Tdz 47 0 "W g

and
NEAR FIELD

z=x+iy=Rez)+i Im(z)=re(?,
The stresses in terms of these functions are expressed as

2
axzi—ﬁ =ReZ(z)—y[ImZ'(2)+ImY'(z)]+2ReY(z)

2

INTERMEDIATE FIELD

¢ =ReZ(z)+y[ImZ'(2)+ImY'(2)]

FAR FIELD Oy=ox?
@
= 82¢—IYZ ReZ'(z)+ReY’
7-xy_ &x&y_ m ( ) y[ e (Z) e (Z)]
dZ(z) dY(z)
Fig. 1 lllustration of the near, intermediate, and far-field re- where Z'(z)= 4z and Y'(z)= R

gions near the single-ended crack tip

The complex functionZ(z) andY(z) for a body containing an
edge crack are
N

Z(Z) — E Anzn71/2
. n-o A3)
Dark Field M
w Y(2)= >, ByZ"
m=0

whereA,, andB,, are coefficients to be determined by a numerical
analysis of experimental data. The opening mode stress intensity
factor,K,, and the uniform stress;,,, are related to only, and

Light Field ~ Bo®
Ki=\27A,

Oox= Bolz

The complex functions defined in E) are not valid for the
205 poinls internal crack because they accommodate only the single singu-
larity associated with an edge crack; however, singularities exist at
both ends of an internal crack. To accommodate the singularities
at each of the crack tips, Sanford and Dr(iti4] have proposed a
Fig. 2 Light and dark field isochromatic fringe patterns yield a new stress functioZ(z) with singularities located at=a andz
set of data points for numerical analysis =b of the form

“

(Z_Zo)ﬁl

J
20=2 A, Jz-a)(z-b)

converges rapidly. Since the valueskof are determined at both

crack tips, the method may be employed for both symmetrical aﬁ&d M ®)
unsymmetrical geometries in a single analysis.
Results from ten experiments with center cracks in several ten- Y(2)= ZO B m(z—29)"
=

sion panels are presented showikgdetermined using both the
single and double-ended solutions in analyzing the same data ggierez,=(a+b)/2.
The results from both methods of data analysis are compared withThe coordinate system for the internal crack in a finite body is
theoretical results and the errors for both approaches are illgsown in Fig. 3. The stresses are determined by substituting Eq.
trated as a function of crack length. (5) into Eq.(2) to obtain

Results from five experiments involving tension panels with
eccentric cracks are also are presented. In this series of experi-

ments, the data were analyzed using only the theory for the inter- YA
nal crack. The experimental results for cracks with different ec- P(X.Y)
centricity ratios were compared with theoretical results from ’
Isida’s[15] series solution fokK .
r
¢
Theory ry !
For edge cracks with a single crack tip in a finite body, Sanford y’
[16] has shown that the Airy’s stress function for the opening 0 9 %% 5 >
mode is given by b (athy2 a x
»=Re f(z)-l—y Im Z(z)+yIm Y(z) 1) Fig. 3 Coordinate system for the internal crack
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Experimental Procedure

Photoelastic models of a tension panel, shown schematically in
Fig. 4, were prepared from a 3.2-m(0.12-in) thick sheet of
photoelastic grade polycarbonatiaat was free of residual bire-
fringence. The polycarbonate polymer exhibited a material fringe
value of 7.00 MPa/mm/fring&40 psi/in./fringe. Both central and
eccentric cracks were introduced by first drilling a small hole on
the horizontal centerline of the tension panel. A fine scroll saw
was then inserted into the hole and cutting along the horizontal
centerline formed a simulated crack. Several tension panels were
prepared with crack lengths é2 ranging from 5.46 mn{0.215
in.) to 47.3 mm(1.862 in). The geometry of the symmetric and
eccentric photoelastic models is defined in Tables 1 and 2, respec-
tively.

The panels were loaded in tension in a screw-type universal-
testing machine, and the fringes were displayed in a custom fab-
ricated white-light diffused polariscope. The load applied to the
tension panel depended upon the length of the crack with increas-
ing load associated with decreasing crack length. At a prescribed
load, photographs of the fringe patterns formed about the crack
tips were recorded through a monochromatic filigavelength of
575 nm using a color digital camera equipped with a 6480
pixel array. Fringe patterns were recorded with the polariscope set
for both light and dark field to double the number of fringe loops
available for analysis. Typical examples of the light and dark
fringe patterns were illustrated in Fig. 2.

The photographs of the isochromatic fringe patterns were post-
processed with image processing software. This interactive pro-
gram allowed for scaling the size of the image and determining
the location and the number of the fringe order. The coordinates
and the fringe ordetx, y, andN) were established for about 200
data points from the pair of photographs for each photoelastic
model. Data was taken from the intermediate regions near both
crack tips and from the region between the crack tips. Character-
izing the fringes in the region between the crack tips is important
to the analysis of the data since they are unique to the internal
crack problem.

2PSM-1 is commercially available from Micro Measurements, Photolastic Divi-

The relations for the stress intensity factors are obtained for

each crack tip by employing the limit definition Kfat each crack

tip with the limit taken from the material side.

K= |in‘(l) oyl g—0\27F 9)
r=

Substituting Eq(7) into Eq. (9) yields

J .
V27 (a—b\i*?t
Ka= >, Al | o= (10)
=0 yJa—b
J \/_ +1
a—b\!
Ko= 2 (~ DA 5~ (1)

Examination of Eqs(10) and (11) indicates that the stress in-
tensity factorsK, andK, depend on the summation of all of the Lt—160 mm —»| Lt— 160 mm—»
unknown coefficient\; . This is different from previous experi-
ence with edge cracks whelkg depended only oA, as indicated

sion, Raleigh, NC.
i 1

|

|

|

|
— 500 mm
=
|
|

! Y !

in Eq. (4).

For boundary value problems with symmetry, such as the cen- ¢ *
tral crack in a tension panef, andK are equal. To achieve this CENTRAL ECCENTRIC
equality, it is necessary for all of the odd coefficierts,Az,Asg, CRACK CRACK

etc., to vanish. Of course, for boundary value problems with ec-

centric crack geometries, the valueskof andK,, differ and all

terms in the series expansion must be considered.

Journal of Applied Mechanics

Fig. 4 Geometry of the tension panels with symmetric and ec-
centric cracks
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Table 1 Geometry of the photoelastic models with a central crack

Model No. | Crack Length (2a) 2a/W Model No. Crack Length (2a) 2a/W
mm (in.) mm (in.)

CC-1 5.46 0.215 0.034 CC-6 16.1 0.633 0.101

CC-2 5.97 0.235 0.038 CcC-7 16.8 0.660 0.105

CC-3 9.96  0.392 0.063 CC-8 19.4 0.763 0.122

cc-4 129 0.509 0.081 cC9 32.1 1.265 0.203

CC-s 133 0.524 0.084 CC-10 473 1.862 0.298

Table 2 Geometry of the photoelastic models with an eccentric crack

Model No. Crack Length (2a) 2a/W Zy zy/W
mm (in.) mm (in.)
EC-1 16.1 0.633 0.101 0.0 0.00 0.00
EC2 159 0.625 0.100 159 063 0.10
EC-3 16.2 0.637 0.102 39.7 1.56 0.25
EC-4 15.9 0.626 0.100 55.4 2.18 035
EC-5 16.0 0.630 0.101 63.5 2.50 0.45
Numerical Analysis of the Data the computer generated fringe pattern with the original fringe pat-

The full set of data points was used as input to an iterative ovlgerrn is important because it provides confidence that the data was

deterministic method applied to the double-ended solution for t gl_ected from the intermediate region. If some the 0”9'”.3' dat_a
aints do not fall on or very near a computer generated fringe, it

internal crack. The equations for the stresses and the applicat e . S .
of a combined Newton-Raphson and linear-least-squares metif n indication that these points may not be within the interme-
iate region where the series solution is representative.

of analysis for this nonlinear formulation were programmed i
Mathematicd. This approach is a generalization of the method .
introduced by Sanford and Dal[@] and follows the same proce- EXperimental Results
dure described by Sanfofd 7] except that the internal crack so-
lution replaces the edge crack solution used for the single en
crack studies.

The mathematical approach for the data analysis is based
minimizing the functiong, which is derived from the photoelastic
stress optic law as indicated below:

entral Cracks. The results obtained from ten different ex-

d;? iments with the central cracks of various lengtha)(th ten-

sion panels subjected to a normalized load of 44430 1h are
quésented in Tables 3 and 4. The results presented in Table 3 were
obtained by employing the series associated with an edge crack,
given by Eq.(3), which neglected the influence of the singularity

gx=DZ+T2—(Nf,/2h)? (12) atthe other end of the crack. The results presented in Table 4 were
determined with the series for the internal crack, B}, where
where  D=[0,,~0,,/2] singularities at both ends of the crack were accommodated. The
T=my results in both Tables 3 and 4 showed that the stress intensity
Nis the fringe °rdef L factors increased with crack length as anticipated. Comparisons of
f, is the photoelastic material fringe value the experimental and theoretical results showed less than three

h is the model thickness.

The subscripk indicates the value of evaluated at a point
(rg, 6 with a fringe order ofN, located in the intermediate re-
gion. SinceD andT are both dependent on coefficiestsandB,,
in Egs. (6)—(9), the correct values for these constants will give
g=0 for all values ofk. One initially estimates the coefficients
A; and B,, and computeg, only to find g,#0. To correct the
error in the initial estimates of the coefficients, the valueg\pf
andB,, are adjusted using an iterative relation based on a Taylc
series expansion af, as described in referencg)).

Although the use of photoelastic data leads to a nonlinear re
tion among the coefficients of the series expansion for the stres
and the fringe order, the overdeterministic solution converged re
idly. The K values at both crack tips are determined from th
best-fit coefficients from Eqg10) and (11). Introducing addi-
tional data points produced more rapid convergence but did r
affect the overall results. Convergence was excellent, achievi
differences between iterations of the order of 4Gn ten itera-
tions or less. Also, the initial estimate of the coefficients in th
series expansion was not a factor for the convergence of the i
portant coefficients. In order to confirm the validity of the solu
tion, computer generated fringe patterns were constructed us
best-fit coefficients. Comparison of the computer generated frin-—
pattern with the original isochromatic fringe pattern, as illustrated
in Fig. 5, indicates the “goodness” of the fit of the numericakig. 5 Comparison of the original isochromatic fringe pattern
analysis with the original photoelastic data. This comparison @fith a computer regenerated fringe pattern for a central crack
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Table 3 Opening mode stress intensity factor models with double-ended internal crack cen-
trally located, numerical analysis with a series solution for a single-ended edge crack load of
4448 N (1000 Ib)

K, K K, K,
MODEL 22/W /2 THEORY" | THEORY' | EXPL EXPL %
NO. ksi-in'? MPa-m"? | ksi-in'? | MPa-m"* | ERROR
CC-1 0.034 0.657 0.744 0.818 0.535 0.588 +28.1
cc2 0.038 0.539 0.777 0.854 0.604 0.664 +22.3
CC-3 0.063 0.480 1.007 1.106 0.903 0.992 +103
CC-4 0.081 0.473 1.149 1263 1.051 1.155 +8.5
CC-5 0.084 0.819 1.165 1.280 1.164 1279 +0.1
CC-6 0.101 0918 1.284 1411 1178 1.295 +8.3
cC7 0.105 0.453 1312 1.442 1211 1331 +7.7
CC-8 0.122 0.736 1.413 1.553 1382 1.519 22
CC-9 0.203 0.680 1.852 2.035 1.874 2.060 12
CC-10 0.298 0.688 2317 2.546 2.290 2517 +12

*The theoretical solution is from Isida reference [15].

Table 4 Opening mode stress intensity factor models with a double-ended internal crack cen-
trally located, numerical analysis with a series solution for a double-ended internal crack load
of 1000 Ib (4448 N)

K, K, K, Kave
MODEL 2a/W rye/a THEORY" EXPL EXPL EXPL %
NO. MPa-m'? MPa-m"”* | MPa-m'? | MPa-m" | ERROR
CC-1 0.034 0.657 0.818 0.846 0.849 0.848 37
cC2 0.038 0.539 0.853 0.765 0.793 0.779 +8.8
CC-3 0.063 0.480 1.107 1.046 1.046 1.046 +55
CC-4 0.081 0473 1263 1220 1.220 1.220 +34
CC-5 0.084 0.819 1.280 1.281 1.346 1314 27
CC6 0.101 0918 1411 1398 1.369 1.393 +12
cc7 0.105 0.453 1.442 1416 1416 1416 +1.7
cC-8 0.122 0.736 1.553 1.534 1.519 1.526 +1.8
cCo 0.203 0.680 2.035 2.088 2.066 2077 21
CC-10 0.298 0.688 2.546 2.477 2.640 2618 238

* ¥*The theoretical solution is from Isida reference [15].

Table 5 Comparison of results for the opening mode stress intensity factor, numerical analy-

sis with series solutions for edge and internal cracks load of 4448 N (1000 Ib)

K; Kave Kave % %

MODEL 2a/W Fave/a THEORY EDGE INT. ERROR ERROR
NO. MPa-m'? ksi-in'? MPa-m'? EDGE INT.
CC-1 0.034 0.657 0.818 0.588 0.848 +281 3.7
CC-2 0.038 0.539 0.853 0.664 0.779 223 +8.8
CC-3 0.063 0.480 1.107 0.992 1.046 +103 +5.5
CcC4 0.081 0.473 1263 1.155 1.220 +8.5 +3.4
CC-5 0.084 0.819 1.280 1279 1314 +0.1 2.7
CcC-6 0.101 0918 1411 1.295 1393 +8.3 1.2
CcC-7 0.105 0.453 1.442 1331 1416 +1.7 +1.7
CC-8 0.122 0.736 1.553 1519 1.526 +2.2 +2.4
CC9 0.203 0.680 2.035 2.060 2077 -12 2.1
CC-10 0.298 0.688 2.546 2.517 2618 +12 2.8

percent error for experiments with longer crackse., 2a/W for predictingK, if the cracks are sufficiently long&ZW>0.12.
>0.12. Errors increased for those experiments with shortén this group of experiments, the location of the data points ex-
cracks, but were always less than ten percent if the data wemessed as,,./a was about 0.7. For all crack lengths, the internal
analyzed using the internal crack series. For very short craoksck series was superior to the edge crack series in the numerical
(i.e., 2a/W<0.06), the errors resulting from using the series foanalysis of the data. For intermediate length cracks, with 0.12
the edge crack became excessive. <2a/W<0.3, the errors occurring when the internal crack series
A comparison of the experimental results obtained with dat@as employed ranged from 1.2 to 3.4 percent. However, when the
analysis using the edge and internal crack series in the data analyge crack series was utilized to evaluate the data the errors were
sis is presented in Table 5. This comparison shows that both timere than twice as large. For very short crackas/\2<0.06, the
edge crack and internal crack series provide an accurate metleobrs increased with both methods of data analysis. However, in
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Table 6 Results for eccentric cracks in a tension panel, numerical analysis with internal crack
series load of 4448 N (1000 Ib)

MODEL 2/W ISIDA ISIDA EXPL EXPL % %
No. Ky Kq K K, ERROR | ERROR
MPa-m'"? | MPa-m”* | MPa-m'? | MPa-m "? K, K,
EC-1 0.00 1.411 1411 1.389 1.398 +1.55 +0.93
EC-2 0.25 1.428 1433 1.466 1.488 -2.62 383
EC-3 0.35 1.444 1.462 1.334 1.501 +7.61 271
EC4 0.40 1.501 1.560 1.426 1.556 +4.98 +0.28

all of the three experiments with the very short cracks the internfaird and Drude accurately models the state of stress for internal
crack series provided much more accurate results. cracks in finite models subject to remote loading.

Eccentric Cracks. Experimental results from the photoelastic ]
studies of eccentric cracks in tension panels are presented in TdBiscussion

6. The results for all four of the experiments were normalized t0 Thq results from this photoelastic study of stress intensity fac-
4448 N(1000 1y applied load, and the crack lengths were nearlyy s i for central and eccentric cracks in a tension panel have
constant at 16 mnf0.63 in). The crack in model EC-1 was cen-yerified the general Westergaard series solution for the internal
trally located to give the case with zero eccentricity. The ecCeRzack. The series solution is used with the well-known overdeter-
tricity, as measured by the ratiny/W, increased from 0.10 10 yinigtic method for numerically solving the nonlinear equations
0.40 in models EC-2 to EC-5. For model EC-5, the tip right-hanflat occur when using photoelasticity for determiniig Of
tip of the crack was only 8.0 mit0.312 in) from the vertical edge ¢qyrse, the results obtained depend on the quality of the data and
of the photo_elastlc model. - . the “goodness of the fit.” The use of a digital camera to record the
Examination of Table 6 indicates that the experimental resulfs,, together with post processing by image analysis software
determined with a numerical analysis of photoelastic data Usighanced the quality of the data and simplified the analysis.
the internal crack series iwvith one exceptionaccurate to within - £q,/51ly important was establishing the fit of the solution to the
five percent. The comparison of the experimental results is magg;, 118]). Some data points carry error into the solution because
with the theoretical results of Isida. Another comparison is showpey are outside the intermediate region for which the series solu-
in Fig. 6 where the reconstructed fringe patterns are matched Wi, s representative. Second, some of these data points are
the original photoelastic isochromatic fringe patterns. In makirghyyeq because of inherent measurement error. By comparing the
the comparison, only the region of dat_a acqwsnﬁshown_ b_y the .reconstructed fringe patterns with the original fringe patterns, one
dot9 is germane. Over the limited region, the strong similarity iMhay qualitatively judge the “goodness of the fit.” The fit may also

the match of the two patterns is an indication of the adequacy gf 5ssessed with an analysis of the sum of the squares of the
the data analysis method. Based on these results and the ab'“tﬁ%ulative erroiE is given by

the experimental solutions to model the fringe pattern between the

crack tips, is clear evidence that the internal crack series of San- 1 K )
E= 12 [No(r,0)=Nq(r,0)] (13)
=

whereN, and Ng are the fringe orders for the experimental and
reconstructed results at the locatigns6) of the k data points.

Comparisons were made for the experimental results obtained
by performing data analysis with the edge and internal crack se-
ries solutions. In general, we found that the error was reduced
significantly when the internal crack series was employed to ana-
lyze the data. The reduction in error depended on the length of the
internal crack with marked reductions for the very short cracks.
For short cracks the use of the internal crack series solution is
imperative if results with errors of about five percent are to be
achieved. For the longer cracks both approaches gave satisfactory
results with errors less than three percent. For intermediate length
internal cracks the superiority of the new series solution is also
evident if accuracy better than four percent is expected.

The series solution for the internal crack has two other advan-
tages. First, solutions for both ends of the crack are obtained in the
same analysis. This reduces the time required for the data analysis
and enables one to more effectively deal with eccentric cracks
subjected to mode 1 loading. Second, the internal crack series
solution effectively increases the size of the intermediate region.
With the internal crack series, data may be taken from much of the
region over the crack where low-order fringes form. With the edge
crack series, the region over the crack must be avoided.
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Inertia Effects in a Curved between the approaching surfaces is small compared with the di-
. . mensions of the surfaces. Then, even if the order of waviness in
Non-Newtonian Squeeze Film the curved plates is small, the effect of nonflatness on the squeeze

film flow is not necessarily negligible. Further, in the case of a
small squeeze velocity, the inertia forces due to the space varia-

R. Usha and P. Vimala tions in the flow are not always small compared with the viscous
Department of Mathematics, and the pressure forces. In view of this, it becomes important to
Indian Institute of Technology, study the combined effects of inertia and curvature on the squeeze
Madras 600 036, India film performance between curved surfaces.

In this note, the combined effects of fluid inertia, curvature, and
non-Newtonian characteristics on the squeeze film pressure are
1 Introduction examined in a curved squeeze film between a flat circular disk and

. . . a curved circular disk lubricated with pseudo-plastic fluids de-
In recent years, hydrodynamically lubricated bearings are usggribed by a cubic equation model. The modified lubrication

under increasingly severe conditions of high speed and hegyy is employed to obtain the equation for the pressure gradient
Ipad. Owing to the frlcthn, the temperature .Of the Iubrlcqtmg fIIrTélnd the equation is solved numerically for the pressure distribu-
rises under such operations and the viscosity of the lubricating gil, tor the sinusoidal motion of the upper curved disk described
decreases. Lubricating oils often contain sufficient additives g{, 5 eynonential function. Further, the analytical solution for the

high molecular-weight polymers as a viscosity index improver iEressure distribution is obtained using a perturbation method.
order to prevent viscosity variation with temperature change. EX-

perimental evidence of rheological characteristics of polymer-
thickened oils indicates that such lubricants behave as nap- . .
Newtonian viscous fluids such as pseudo-plastic fluids when the Theoretical Analysis

amount of additives is small. It has been confirmed that the non-The axially symmetric laminar flow of a non-Newtonian lubri-
Newtonian viscous behavior of polymer-thickened oils may beant fluid that exhibits characteristics in agreement with the cubic
approximated by a cubic equation model relating the shear str@sgiation model given by

and the rate of shedf1]). In the cubic equation model, the shear 3

rate y is expressed in terms of the shear stresas uy=r IL‘LE:TYZ—H(TQ 1)
+k73, wherek>0 characterizes the pseudo-plastic fluid: 0,
the Newtonian fluid an&<0, the dilatant fluid, the initial viscos-
ity u is equal to the viscosity of the Newtonian fluid.

The effects of fluid inertia forces in parallel circular and annulaf
squeeze films lubricated with pseudo-plastic fluids have been H(r t):h(t)e’”z )
theoretically examined using the cubic equation model by the '
method of averaged inertia by Hashimoto and WE2i8]. This WhereH is axisymmetric about the-axis andh(t) denotes the
study has been motivated by the significance of fluid inertia e¢entral film thicknessFig. 1(b)) ([8,9)). It is possible to generate
fects in most squeeze films, in addition to the non-Newtoniagifferent types of films for different values af because of the
effects, where the operating speed is high or low viscosity fluigiependence oo. Concave films are generated for0 and con-
are used as lubricantf4-7]). vex films are obtained foc<0. The top curved disk moves to-

The effect of a curved surface on a Newtonian squeeze film hagrds the bottom disk with velocitgh/dt and the central film
drawn the interest of many researchers due to its importancetlickness is maintained as constant.
improving the performance of hydraulic machine elements andUsing the hydrodynamic lubrication assumptions applicable to
these studies include the investigations by M{i8fi, Gupta and thin films, and retaining the inertial terms, the governing equation
Kapur[9], and Hasegawfl0]. In squeeze flow problems, the gapof motion in ther-direction is given by

between a flat circular disk located 260 and a curved circular
disk atz=H(r,t) is consideredFig. 1(a)). The film thickness
ariation at radius is assumed to be

AU au  du p o,
FW—|=— —
ot Car U oz o oz

©)
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, AugusWhereu andw denote the radial and axial components of velocity

16, 2000; final revision, April 28, 2001. Associated Editor: D. A. Siginer. and 7,, is the shear stress. The equation of continuity is
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Fig. 1 (a) Curved squeeze film geometry, (b) configuration of the curved disk

14(ru) aw " In terms of the following dimensionless quantities
r or gz “) . r . Z . w
The boundary conditions are re= E 7" = h_o' w* = VTO’
u=0, w=0 on z=0 (5)
uhg h tWo
dh 7Cr2 u*:_1 h*=_l =_1
u=0, w=4g; onz =he (6) raWo hg ho
p=0 onr=r, (7) o fehg o = phy :k(MfaWo)z
wherer , is the radius of the circular disk. The equation for the ¢ praWo' MrgWo’ hg ’
squeeze motion is obtained fro@), (5), and(6) as
2 — 2 phOWO
he~er r dh c=cry Re=— — (13)
udz=— E a . (8)
0 Egs.(14), (13), and(11) are obtained as
As the film is thin, it is reasonable to take the inertia forces as s s
constant across the film and hence the inertia terms inf®are SF¥3n*Se ¢ frpxSgSer . dh*
approximated by the mean value averaged across the film thick- 20 + 6 a7 0 (16)
ness as
2
p he—cr?( du au au ap I, SF*3 _, .
he o J'o (E+UW+WE) Z:—E-i- ﬁzrz 9) U* = ——(2z*4—4h*e & 2 %34 gp*2g 20" 2% 2
which is rewritten using Eqg4)—(6) as . f* .
p [0 [heo? 9 1) (heor —h*3e 3" 7 ) + ?(Z*Z—h*e‘cr z*) 17
——a? E f udz+ E + F f u?dz
he 0 0 l?p* _f*_ Re J h*eia*z . d )
p  Id7y a* e h* e_a*i aT o u VA
=—_—+ . (10)
ar Jz 9 1 S*2
. - . h*eor
Introducing the modified pressure gradiéptas + ar_*+ r_*)f ¢ u*2dz (18)
0
ap p [ 9 [hee? d he e
fe=—r + he? | 7t udzt| -+ - usdz|, whereh, is the initial central film thicknesa)V, is the character-
0 0 11 istic velocity of the curved plate, and Re is the Reynolds number.
) 11 Substituting foru* from (17) in (18), the dimensionless radial
Eq. (10) gives ) pressure gradient is given by
0Tz
e— 9z (12) é’p* . Re r* th* . ﬂf:

h*5

L — — _— +f*r—
Sincef, is independent of, integrating Eq(12) with respect ta ar* e premor*’ 2 dT° eoar*
and using(1), (5), and (6), the radial velocity component is ob- o ge*2.42 oed AT *2ena
tained as xeSE*Z(iJr Shr2e-20r*2gx . SPhr e 4o U )
1/ kf3 60 105 960

V4
el B A N O —cr23
ufﬂ 2(z he ")+ 8{22 4he "'z (1 shrre-Trie
_a*Zh*Sefscr*z 4 €
e

+3h%e 22— nle %17} |, (13) 12 30
52h* 4e—4?r*2f*4 5 2p* 5e—5?r*2
Substituting Eq(13) in (8), the equation satisfied by the modified + i ) 4 -° -
pressure gradierft, is obtained as 320 r
kh5€75cr2 f3 h3e73cr2 . dh 1 1 Sh* 2e— ZE*ZfJecZ 52h* 4e—4&*2f:4 1
—r—. X | =—=
40 et 6 e ! dt (14) 120+ 420 * 5760 (19)
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Fig. 3 Effects of curvature on radial pressure distribution

—— —4,=10

It is observed that the radial pressure gradient in the non-

Newtonian squeeze film obtained from E9) for the case of a
flat circular disk €=0.0) is identical to the result presented by
Hashimoto and Wadg2].

The pressure distributiop*, is obtained by integrating Eq.

(19 and this requires a knowledge of the modified pressure gra-

dientfy . This is obtained by solving Eq16) for f% . The radial

and the axial velocity in the squeeze film are then obtained from

(17) and(4), respectively.

3 Approximate Analytical Solution

A perturbation method is employed to determine the dimensiorPo1™ 35h* 7

less squeeze film pressure. The dimensionless pregsureéhe
dimensionless modified pressure gradiEhtand the radial veloc-
ity componentu* are expanded for @Re<1 as

f5 = (feooT Ofeor) + RE(ferot 8fe11) + O(RE) (20)
P* = (Poot SPor) + RE(P1g+ p11) + O(RE) (21)
U* = (Ugg+ SUgy) + Re(Ug+ Supy) + O(RE). (22)

Substituting(20), (21) and(22) in (16) and(19) and equating the
like powers of Re, and using the boundary conditionpdn the
solution under the assumption1< §<1 is obtained as

Journal of Applied Mechanics

P10=

(numerical ) £¢=0.2, T=0.8; —6,=0.0;
6r* dh*
feoozm T (23)
(€30*?— c3%) gh
Poo= ch* 3 ﬁ (24)
B 162*3 [(dh*\3
feOl_ - Sh* 7e,7a*2 di-l- (25)

81 [dh*\31 T

(F) [_(r*Zekr Z_eYC)_ﬁ(ehr 2_970)}

(26)

fe10=0 (27)

1 (e“*z—eC 'dzh*) 3 e2cr*2_ez€) dh*)2
ah* | T dT? ] 20h*2 T aT

orx 2 o dh* 2
_Zm*z(r*2e2cr _eZC)(F) (28)
fe11=0 (29)
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36 2162 due to Contact and Flow

For a given motion of the upper curved disk, equatidh) gives
the pressure distribution in the curved squeeze film for small vaf- G. Barnes
ues of the parametet (characterizing the non-Newtonian behav- =~

ior of the liquid lubricant and the squeeze Reynolds number Rer Q. Truong

+0(R&)  (31)

4 Results and Discussion
G. G. Adams

The approximate analytical solution presented above is val
for small values of the parametefsand the squeeze Reynoldslr_%uow ASME
number Re. For other values of these parameters, the equations
(16) and (19) are solved numerically for radial pressure distribuDepartment of Mechanical, Industrial, and Manufacturing
tion for given sinusoidal motion of the upper curved diskEngineering, Northeastern University, Boston, MA
(h*(T)=1+e€sinT). It is observed thatFigures 2, 3 02115
(i) the pressure distribution for pseudoplastic fluids is less than
that for Newtonian fluids for both flat and curved squeeze films,

(i) with the increase of the curvature parameter, the pressure dis- E. McGruer
tribution increases for the concave disk and the reverse trend_[$ —* . . .
noted for convex disks, Department of Electrical and Computer Engineering,

(ii ) the changes in pressure due to inertia effects, though small &tertheastern University, Boston, MA 02115
not negligible,
(iv) film pressure increases with the increase in amplitude and this

increase is enhanced by the fluid inertia effects. Lobsters use their antennae to navigate among obstacles along

It is worth mentioning that the paper combines elegantly thg,'ocoan figor. Effective ambulation requires that the lobster, or a

method of averaged inertia or modified lubrication theory for no iomimetic lobster robot whose behavior is patterned after a real

Newtonian squeeze films and the small perturbation method gﬁ ster, must distinguish between antenna bending due to contact

Newtonian curved squeeze film, for a given motion of the uppg

curved moving surface. The numerical results indicate a markggl -« o ‘curvature distribution due to flow is nearly a qua-

influence of fluid inertia, pseudoplasticity of the lubricant and thﬁratic function of the arc-length measured from the tip of the
curvature of the upper curved disk on the pressure distribution Nienna [DOI: 10.1115/1.1406995

the squeeze film.

ture of a tapered antenna due to an end-load is nearly constant
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Each sensor is a simple switch which is either open or closed
depending upon whether or not the local curvature exceeds a
threshold value.

Analysis

The slope of the bent antenna can be quite large and so an
analysis of the antenna deformation requires the use of the large
deflection and small material strain theory known asdlastica
([3]). These calculations will determine the relationship between
the antenna curvature and the magnitude and direction of the end-
load and water flow. In order to simplify the analysis and numeri-
cal computations, ar-y coordinate systeniwith arc-length co-
ordinates) is placed at the tip of the antenna as shown in Fig. 3,
whereas the&-Y-axes are attached to the fixed end. In Figa3s
the angle between the end-loRdand theY-axis, B is the angle
between the direction of water flow and tieaxis, ¢(s) is the
angle between the tangent to the curve andktbiection(tangent
to the free eng and ¢, is the angle of rotation of the free end of
the antenna.

From Frisch-Fay[3] the moment-curvature equation for the
elastica is given by

Fig. 1 A biomimetic lobster robot

effort to design and construct a biomimetic lobster rolbag. 1). El d_¢ -M )
These underwater ambulatory vehicles are to be used to search for ds

and destroy mines in the littoral zone. The robot design and its
behavior mimics those of lobsters which have evolved over maf}
hundreds of thousands of years to optimize their search for fof§

on the ocean floor. Lobsters use both their sight and their antenixe

which E is the Young’s modulug, is the second moment of the
ss-sectional area, amdl is the internal bending moment. Tak-
the derivative of 1) with respect to the arc-length coordinate

in order to navigate the rocky and uneven sea floor in the coa yes
area. However, experiments have shown that blindfolded lobsters d’¢ dli d¢ dM
can navigate well by using their antennae aldfig). When the El ¥+Ed_s,ﬁz E:V 2

end of an antenna touches an obstacle, the contact force causes the

antenna to bendt is the bending of the antenna which the lobstefn which V is the internal shearing forcé =5 wt3, wherew
uses to sense the nearby obstructi@n the other hand, water =w(s) andt are the width and thickness respectively of the an-
flow due to surf or currents will also cause these flexible antenngghna cross section. For this uniformly tapered anteshiids is

to bend, often to the same degree as when contacting an obstasd@istant. Equatiori2) is subject to the boundary conditions of
How then does a lobster distinguish antenna bending due to ce@ro angular rotation and vanishing bending moment, i.e.,

tact and bending due to flow? How do we design the biomimetic

lobster robot so that it can distinguish between contact and flow? $(0)=0 d_¢(0): Pcoda—¢y) 3)
It was an attempt to answer these questions which motivated this " ds Edl/ds
investigation.

It is noted that the first of these conditions is a consequence of the

. choice of thex-y coordinate system. The second condition gives a

Antenna Design nonzero curvature at the free end due to the vanishing values of
The design of the lobster robot antenna is based on that of a reath the moment and the second moment of the area at that point.

lobster antenna, specifically the function that it serves as a sensihés noted that the lobster moves slowlgeveral cm/sand its

device to detect contact with an obstacle. Each antenna is comtennae are very flexible and highly damped due to the surround-

posed of two halves of machined PVC sheets, each of which is @@ sea water. Thus the effect of antennae vibration induced by

mils thick with a milled slot 10 mils deeg[2]). The bending sudden contact with an obstacle is negligible.

sensors and flexible circuit are sandwiched in the slot between the

two halves which serves as a housing to isolate the sensors and

circuit from the sea wate(Fig. 2). The antenna design has a

tapered width in order to mimic the antennae of a real lobster./ Ay B
will be shown later in this note, it is the taper which is the crucic Water
feature which allows the lobster to distinguish between bendi 7/ Flow \q
due to contact and bending due to flow. There are three bend

sensors, one at each of three points on the antenngFigis2).

Location of Bending Sensors dL =)

Flexible Circuit

Polyvinyl Chloride

Fig. 3 An antenna acted upon by an end-load and by water
Fig. 2 PVC antenna with bending sensors and a flexible circuit flow
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It is now necessary to relate the internal shear fokéetp the 180

contact force and pressure due to the water flow using equilibrium
and a simplified description of the water flow. The use of a drag 150 |
coefficient([4]) for the component of the flow normal to the an-
tenna leads to the force per unit length acting perpendicular to the
antennae %CDp[U cos@' — ¢ —B)W') at s=s’. This quantity 7 1201
is then integrated and combined with the shear force contribution$
due to the end-load in order to obtain gs’ 9 |
1 &
V(s)=Pcoga—¢ +¢)+ ECDPU2 60 |
s ! ! ! / 30 |
X | W' cog(¢'—¢L—pB)cogp—¢')ds’  (4)
0
0 , . ‘ ‘ )
whereCy, is the drag coefficientp is the water densityJ is the 180 150 -120 90 -60 30 O 30 €0 90 120

flow speed,B is the flow angle,¢'=¢(s'), and w'=w(s’).
Equationg2) and(4) can be readily combined in order to obtain a
second-order nonlinear differential equation awhich is subject Fig. 5 Maximum angle of deflection versus angle of flow for
to the two boundary condition$). These equations were solvedvarious flow speeds and with vanishing end-load

numerically using standard software for the solution of ordinary

differential equations. Note that the choice of the coordinate

B (Degrees)

system has allowed this equation to be solved as an initial val 18
problem, rather than as a boundary value problem. After determi
ing ¢(s) it is a simple matter to determine the curvatdig/ds at
any point.

Flow

12 | 4mls 202020 mm==- Contact

(1/m)
>

Results and Discussion
[

The antenna is 11.12 mm wide at the base, 0.327 m long, a5
1.016 mm thick. The Young’s modulus of PVC is 2.2 GPa. Resul§ 8 [
are shown in Fig. 4 for the tip anglep() as a function of the 3
end-load angléw), for various values of the end-lo&R) and with 9 mN
zero flow velocity. The tip angle vanishes far=—90 deg which 4 F
corresponds to an axial tensile load. The tip angle also vanist
for «=90 deg which corresponds to an axial compressive lo¢ 2 L
provided thatP is less than the buckling loadP(,). Thus for -

sufficiently largeP, the results are multivalued #>90 deg with 0
the upper branch representing stable equilibrium. Note that f 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
small P the maximum tip angle occurs whenis close to zero, Length Along Antenna (m)

i.e., when the load is perpendicular to the initial beam configura- )
tion. However, as the load increases the maximum value,of Fig. 6 Curvature along the antennae for various flow rates and
occurs for progressively larger values®fue to the effect of the 2PPlied end loads
tip rotation on the deflection.
Results are shown in Fig. 5 for the tip anglé, () as a function

of the flow angleg(B), for various values of the flow-speéd) and
with a vanishing end-load. Again the tip angle vanishes wh
B=+90 deg with an instability occurring now for large flow!

180

¢ (Degrees)

120

o (Degrees)

Fig. 4 Maximum deflection angle versus angle of applied load
for various values of the applied load and with zero flow

950 / Vol. 68, NOVEMBER 2001

150

speeds ang@ near—90 deg. For low flow speeds the maximum tip
gle occurs whep is close to zero, but due to the nonlinearity
e maximum tip angle occurs for increasingly negative values of

It is the curvature of the antenna, at the locations of the three
sensors, which will activate the sensors. Thus Fig. 6 shows the
variation of the antenna curvature with arc-length coordirsate
(measured from the fixed entbr various flow speedéwvith 8=0
and P=0) and contact force$with «=0 andU =0). Under the
action of an end-load, the curvature at the free end is not zero as
previously discussed and is not monotonic with the applied load.
The latter result is due to the nonlinear effect associated with the
rotation of the end under increasing applied load. An increase in
the applied load does not produce a proportional increase in cur-
vature because the angle of rotatiah § also increases (3) Itis
noted that it is possible to use a prescribed displacement boundary
condition or a prescribed end-load condition. Either family of
curves would contain the same essential information. Also note
the dramatic difference in curvature distribution for contact and
for flow. For contact the curvature distribution is nearly constant.
For flow the curvature is zero at the free end and increases nearly
quadratically to a maximum at the fixed end.

A simple linear analysis for a transverse end-load shows that
the curvature(dé/ds in Eq. (1)) for a taperedbeam is exactly
constant because both the bending mon{&ft and the second
moment of the ared) increase linearly with distance from the
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free end. However, for flow the linear analysis gives a linearlgven for strongly nonlinear systems. But it is difficult to give
varying load per unit length which yields a cubic distribution ohigh-order analytical approximate formulas by applying the
internal moment and a quadratic distribution of curvature. Nomethod. Therefore one needs to develop some analytical tech-
consider aconstantcross-section antenna. The curvature and imiques which can overcome the above-mentioned difficulties.
ternal moment are linear functions of position for the end-load and Consider a single-degree-of-freedom system governed by
quadratic functions of position for flow. Hence the tapered an- 2
tenna is more capable of distinguishing between deformation due d_u — — @ -

. ; . +f(u)=0, u(0)=4, (0)=0. @
to contact and deformation due to flow, than is the uniform an- dt® dt
tenna. The nonlinear theory used in this paper is necessary du
the large angles of rotation. Nonetheless it is still true that, for
tapered antenna, the distribution of curvatures due to contact
flow differ greatly and allows the lobster robot to distinguish b
tween antenna deflections due to contact and deflections du
flow.

€49 F(u)=1 f(u)du be the potential energy of the system and
pose it arrives at its minimum at=u,, called a center. We
it y assumely= 0. For the special case 6¢{u) being odd func-
ion of u, Agrwal and Denmarf4] and Liao and Chwang5]
eab‘blied the weighted linearization method and the homotopy
analysis method, respectively, to establish analytical approximate
formulas for the period. In this paper we consider the caséwf
Acknowledgments being a general function af, then the system will oscillate be-

The authors are grateful to the Controlled Biological Systen%’een alsymlm_etrlc |ImES'c:z,,8] where botha and 5 have the same
Program of DARPA for their support of this work under Granfnergy level, i.e.F(a)=F(p).
09.1. A new approximate method will be presented to solve @&g.
NO00014-98-1-0381. or . T . X .
By combining the linearization of governing equation with the
method of harmonic balance, we establish two analytical approxi-
References mate formulas for the period. These two formulas are valid for
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Current and Surge,Proceedings of the Autonomous Vehicles in Mines Coun-
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(MEMS) 1999 MEMS-Vol. 1, ASME, New York. A new independent variable,= pt, is introduced, Eq(1) be-
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[4] Munson, B. R., Young, D. F., and Okiishi, T. H., 1998)ndamentals of Fluid

Mechanics 3rd Ed., John Wiley and Sons, New York. p2urr+ f(u) =0, U(O) — ,31 u’(O) =0 (2)

where a prime denotes differentiation with respect.tdhe new
independent variableis chosen in such a way that the solution of
Eq. (2) is a periodic function ofr, of period 27. The correspond-

A New ApproaCh to Nonlinear ing period is given byl =2m/p.
Oscillations Let ug(7) be an approximation tai(7), which is a periodic

function of 7, of period 27, and satisfies initial conditions in Eq.

(2). The idea is to express the periodic solution of &).with the
B. Wu assigned initial conditions in the formag(7)+uv(7), which is
e-mail: bswu@public.cc.jl.cn composed of the harmonics of the motion. Herg7) is the main
part andv(7) is the correction part. Then(7) is assumed to
satisfy, via linearization of Eq.2), the following equation:

P. Li

p2ug+f(ug)+p%”+f,(Uug)v=0, v(0)=0, v’'(0)=0.
Department of Mathematics, Jilin University, 3)
Changchun 130012, P. R. China Solving the resulting linear Eq3) in v, by the method of har-

monic balance, will give the approximate period and correspond-
ing periodic solution.

. ) . . . Note that the trajectories around the center are not necessarily
This paper deals with nonlinear oscillation of a general singlesy mmetric with respect to the center. Thus the motion appears to
degree-of-freedom system. By combining the linearization of thf 45 the amplitude increases: The midpoint of the motion is not
governing equation with the method of harmonic balance, we &g center. Following the fact above, a reasonable and simple ini-

tablish two analytical_approximate formulas for the periqd. Thesgy approximation satisfying initial conditions in E() is given
two formulas are valid for small as well as large amplitudes y

oscillation. [DOI: 10.1115/1.1406960

_ Bta N B—a

. U(1)=——+—
Introduc?tlon ] ] . where for =, ug(7) arrives at the minimuna of u(7). Based

The widest used analytical techniques to solve nonlinear osaiin the selection ofiy(7), v(7) should satisfy, in addition initial
lations are the perturbation metho@ayfeh [1] and Mickens conditions in Eq. (3), v(7)=0. We expandf[uy(7)] and

[2]). However, an analytical approximate solution given by the [uy(7)], respectively, into the Fourier series of
perturbation methods has, in most cases, a small range of validity.

COST 4)

In some cases, one may apply the method of harmonic balance to ag E .
obtain an analytic approximate soluti¢fl—3]), which is valid fluo(7)]= 7+i:1 a; cogi7),
- ®)
_ _ e bo ,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF fulug(m)]= =+ 2 b; coqir).
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 2 =
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v(7)=co[1—cog27)]. (6)

Substituting Egs(5) and (6) into Eq. (3), equating the constant
term and the coefficient of cago zeros, respectively, and solving 8.04
the set of resulting equations fprandc,, we can obtain the first
approximation to period:

8.5+

5 75
T.—2 2 ag(b;—bg) || 712 7 '%
1= ™ ,3_0’ a— Z(bo_bz) ( ) a 7.0
Next, we take 6.54
v(7)=co[1—cog27)]+cy[cosT—cog37)]. (8)
Substituting Eqgs(5) and (8) into Eq. (3), equating the constant 6‘00'0 04 02 03 04 05

term, the coefficients of casand cos 2 to zeros, respectively,
and solving the set of resulting equations fipicy, andc,, leads
to the second approximation to peridd

Oscillation amplitude p

Fig. 1 Comparison of the approximate periods with the exact

—B=(B2—4AC)M2]~ 12 one
T,=27 oA (9)
where 5
A=8[(—a)(b;—bs)—2ag], Tp=2m| 1+ 1—2/32) (13)
B=[(bg—Db2)(b3—bs) = (2by—by—h,)(b;—bs)](a—B) and
—16a;(b;—b3) +2a4(5by—2b,—3b,) +4a,(bg—b,), Th=2m(1+a+p) "2 (14)
C=2a,(bg—by)(bz—bs)+ (bg—by)[ag(2b,—by—b,) The exact period is

—2a,(bg—b5)]+ (b;— bg)[2g(bs—bs) +2a,(2b,— bo—by) P (15)
+ 2a2(b1— bs)]

; — ; : For comparison, the exact period in E§5) and the approxi-
The sign beforeyBZ—4AC in Eq. (9) should be determined by . .
the condition that the rati®, /T, is near 1 ag3 tends to 0. High- ate periods computed, respectively, by Egd), (12), (13), and

C o : : : = 1..(14) are pictured in Fig. 1. For the oscillator, the maximum oscil-
\(I)Vrgli;r approximations for periotl can be established in a s'm”arlation amplitude should satisig<0.5 (for B=0.5, Eq.(10) has a

homoclinic orbit with period+e). Figure 1 indicates that formu-
las(11) and(12) are more exact than formul&$3) and(14), and

can give very good approximate periods for both small and large
Example values of.

We take the oscillator with second-order nonlinearity as an ex-
ample to illustrate the use and the effectiveness of the proposgdclusions
approach. The motion equation is
d?u

W+u+u2:o, u(0)=2, %(0):0. (10)

B 2
Te= Zf [,32— u?+ 5(33— u®)

We have presented a new method to solve nonlinear oscillation
of a general single-degree-of-freedom system. The equation of
motion need not contain a small parameter. Unlike the classical
. ) ) harmonic balance method, linearization is performed prior to pro-

For this problem,f(u)=u+u®, f,(u)=1+2u. The Fourier ceeding with harmonic balancing thus resulting in linear algebraic
series expansions 6fue(7)] andf [up(7)] are given in Eq(S)  equations instead of nonlinear algebraic equations. Hence, we are
where ag=pB+a+(B+a)*/2+(B—a)?4; a;=(B—a)(1+B able to establish these approximate analytic formulas for the exact
+a)l2; a;=—(B—a)?8; by=2(1+B+a); by=B—a; ai.1 solution. These approximate solutions are valid for small as well
=b;=0(i=2,3, ...). Substitution of the these coefficients intogs large amplitudes of oscillation.

Egs. (7) and (9), respectively, gives two analytical approximate
formulas to the period:
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1 .
Ot r—g[a'w',fr (0'“* 0h9)SIND+ Ot COoS¢]

+;(a'd,{'d,—a'd,(ﬁ-i-ag{)-i-fg:pﬂg, (1b)
£
1 .
Ogp ¢t r—g(a'(,.(,.v(,-i- 204pSing+20 4, C0SP)
1 .
+p—§(0¢91¢+0w)+f@=pu0 (1c)

whereu,, u,, andu, (circumferential are displacement compo-
nents;p,=p;+ ¢ andr = (p,+ {)sin ¢, with p; andp, being the
principal radii of curvature of the midsurfad€ig. 1); andp is
mass density per unit volume. The commas and dots are the con-

ventional space and time derivatives.

Assuming a linearly elastic, isotropic material, the stress-strain
equations are
Equations of motion and energy functionals are derived for a
three-dimensional coordinate system especially useful for analyz-
ing the static and dynamic behavior of arbitrarily thick shells of Ts¢=A&+2Ge 44,
revolution having variable thickness. The field equations are uti-
lized to express them in terms of displacement components.
[DOI: 10.1115/1.1406961

o=Ne+2Ge;, ogy=Ne+2Geyy,

@

04;=2Gey;, 04g=2Geyy, 0;/y=2Geyy,

where X and G are the Lamecoefficients, ande=e 4,+ ¢,

Introduction +e,,. The strain-displacement equations are found to be

Dozens of bookscf. Leissa[1]) and scores of published papers
exist which derive field equations, equations of motion, and/or
energy functionals for thin or moderately thick shells of revolu-
tion. Such derivations typically make simple kinematic assump-
tions about the variation of the displacements through the thic
ness. This reduces the three-dimensional theory to a tw
dimensional one characterized by the middle surfac
displacements. But for thicker shells or higher frequen¢st®rt
wave lengthg a three-dimensional analysis is necessary.

This work presents a summary of applicable equations for tt
three-dimensional analysis of shells of revolution with arbitrar
curvature and arbitrary, variable thickness. They are expressec
terms of a curvilineat,,6) coordinate system, as shown in Fig.
1, which is a particularly useful one. They were derived by tenst
analysis, relating all quantities to the shell middle surf@ce0).
Much of the relevant derivation is available in the dissertation ¢
the first authoKang[2]). And they have been used successfully
to obtain accurate results for some three-dimensional vibratit
problems(Kang and Leiss#&3,4]).

Equations of Motion

Utilizing the general equations in tensorial form, and relatini
them to the shell midsurface, the equations of motion in terms
the stress components{) are found to bgKang[2])

1 .
Tprct r—g [T 0,0 Ty SINP+ (0 44— 0p)COSP]

(1a) C) o

zZ

1 .
4
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uﬁvtb
P¢

1 1
s¢¢=1)—§(u¢’¢+ Ug), €=Uz gs s¢g=§ r—g(u¢'97ugcos¢)+

1 1
s(,(,=r—g(u(,vg+u¢,cos¢>+ugsin¢>), E0=5

1 .
E(ug’,,—ugsmqﬁ)—ku(M

Assuming the material to be homogeneous, and substituting
i 3) Egs.(2) and(3) into (1) yields the equations of motion in terms of
displacement components:

1
Eo=5

1
Ug,— —(Ug—Ugg)
P¢

Urge 1 P 1 :
+ —2(U§'¢+U¢v¢¢)f T(U¢'¢+ Ug)+ r {Ugyd,g‘k(Ugyd,*U¢)S|n¢+(ud)’¢+u;)cos¢}
N O P¢ Py

A

cos¢ _ UgeSing 1
__ri (Ug,pt+U,SING+U,COSP) —_—

+G F{(3u0,9+2ugsin¢+2u¢,cos¢)cos¢—u¢,%}
¢

Ugp,zet

1 _ 1
+ —rgpg{ue,d)ﬁ(u§,¢—u¢)5|n¢+2(u¢,¢+ u,)cos¢}+ p_g(ug""ﬁ Ug.o)

1 2p14
+ _2(3UL¢_U¢+2U¢'¢¢))_ _3 (Ud)yd)“l‘ U!)
P¢ p¢

A

1 ] sing ] 1 1
Ugret r—g(u,wﬁ UsSing+u, COSP) — _r§ (Ugptu;sing+u,cosep)+ p_g(u(b’(b(—i_ Ug o)~ p_g(u‘/"‘ﬁ uy)

+G

1 1 cos
2ug et r—(u9,§9+2ugygsin ¢p+Uuy,COSP)+ r—z{ugyog—(3u9,0+2ugsin ¢+2u,Ccosg)sinp}+ r—pqﬁ(ug,d)—u(ﬁ)
¢ ¢ Pe

1 1 P1e
+ _(2U§‘g+ U¢'¢§)+ _2(U§y¢¢_3ud,'¢_2u{)+ _(Uqg_Ug'd,)
Pe Pz P

3 +f,=pl, (4b)
¢

u 1 1 u u 1
2,00 . 0,¢ 0,09 Plg
A -t —2(Ug ggtUggSiNp+Uy »COSH) + r—(u¢,¢9+ Ug ) [+ G| Uy et ——+ —3——3 U, +r_(u“+ Ug g0
¢ T Pe pe P P Pe
1 : 1 . : .
+Up 4 COSP) + . (Ug 9t UgSING)+ r—2{2u9’99+ (3ug g—Ugsing)sing+(3u, 4— U, COSP)COSP} |+ T4=pUy. (4c)
4 4
I
The correctness of Eq4) was verified by means of Maple, a Uy COSe+ U, SiNd+ Uy, Us+Ug g
symbolic logic computer program. Exact solutions of E4).are K= ; =, Ky=——,
possible for some constant or variable thickness shell configura- ¢ Pe
tions, such as circular cylindrical or conical. They may also be U—u
useful in using some approximate methddsy., Galerkin, finite =u =_¢ 4 |
; Ka=Uggr Ka b0
differences. P¢
Ugp—UpSing Ug p—UpCOSP  Ug
. K5= Ugrr  Ke= -
Energy Functionals s re p¢

For other approaches to the probléeng., Ritz, finite elemeit The kinetic energy(T) is simply
it is desirable to have the energy functionals corresponding to Eq.
(4). The strain energy due to deformation is the volume intergral 1 ) o
1 T=5 fﬂp(ui-i- uz+ug)p,r depdZde. 7)

V= 5 fﬂ(o¢¢a¢¢+ O 18T T 008 99T 20 48 e+ 20 498 4

+20'§98g9)pgrgd¢d§d0 ®) R[e1§e|_r'enceASW 1971 Vibrati f Shells U.S. G t Printing Offi
. . . . . eissa, A. W., Vibration of Shells U.S. Government Printing Office;
with p, and_rg given previously. Substituting Eq&2) and(3) into 1993 reprinted by The Acoustical Society of America.
(5) results in [2] Kang, J.-H., 1997, “Three-Dimensional Vibration Analysis of Thick Shells of

Revolution With Arbitrary Curvature and Variable Thickness,” Ph.D. disserta-
1 ) 5 5 5 tion, The Ohio State University.
V= 3 [N(K1+ Kot K3)“+ G{2( ki + K5+ K5) [3] Kang, J.-H., and Leissa, A. W., 1999, “Three-Dimensional Vibrations of Hol-
Q low Cones and Cylinders With Linear Thickness Variations,” J. Acoust. Soc.
Am., 106, pp. 748—755.

+ Kfﬁ— Ké“r Ké}]pgr s’d ¢d{de, (6) [4] Kang, J.-H., and Leissa, A. W., 2000, “Three-Dimensional Vibrations of Thick
Spherical Shell Segments With Variable Thickness,” Int. J. Solids Str8¢t.,
where pp. 4811-4823.
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Torsion of a Circular Compound Bar de

With Imperfect Interface dn

where v=—yi+Xxj and n denotes the outward normal to the
boundaryC of the cross sectio8 There are two types of interface

=—v-n on C Q)

T. Chen . conditions. The first kind, referred to as the LS type, is character-
e-mail: tchen@mail.ncku.edu.tw ized by ([1])
l. S. Weng AMu(Ve+v)-n}r=0, u1(Ver+V)-n[r=—E&Ae[r, (2)

whereAq=q;—(, denotes the jump in a quantityacrosd’, u is
Department of Civil Engineering, National Cheng Kung the shear modulus) is the unit normal of the interface pointing
University, Tainan 70101, Taiwan from phase 1 to 2, andlis the interface parameter. The other type
of interface is called the HS type, in which on the interfécé
follows that([1])

The Saint-Venant torsion problem of a circular cylinder reinforced  Ag|r=0, A{u(Vo+Vv)-n}Hr=V{n(Vso+Vv-9]lr, (3)

by a nonconcentric circular bar of a different material with an . . ) )

imperfect interface is studied. Conformal mapping together with'41€ré # is the interface parameter aWd¢=V¢-s, sis the unit

Laurent series expansion are employed to analyze the probl 1gential vector td” chosen as belng_ rotgted counterclockwise

The jump condition in either the warping function or the shealfom the normal vecton. Perfect bonding interfaces correspond

traction, characterizing the imperfect interface, is simulated in th{® the limiting value of¢é—c or 7—0.

transformed domain in an exact manner. Unlike the problem with

perfectly bonded interface, the series solution has to be resolved

by a tlruncdation].c l\rl]umerical iIIustrationshare provifded ffor ttl;e tgr-z Torsion of a Circular Cylinder Reinforced by a Lon-

sional rigidity of the cross section. In the case of perfect bondin . . .

case, our results agree with that reported in MuskhelishvilF tudinal Round Bar of a Different Material

[DOI: 10.1115/1.1406962 To begin with, we define the cross section@sonsisting of
the regionS, bounded by the circl€, and the regiors,, bounded
by the same circlé” and a circleC (Fig. 1). The circlesl’ andC
need not be concentric. Let the moduli of rigidity of the compo-

1 Introduction nent bars bew; and u, in S; andS,, respectively. Suppose the

Benveniste and Chdi] recently proved that, in Saint-Venant'sadii of the circlesl’ and C are respectively given by, andr,
torsion problem of compound bars, thin interphases with eith@Pd the quantity denotes the distance between their centérs (
low or high stiffness between the phases lead to two differeft’2~"1)- AS in([4]), we introduce the bilinear mapping function
types of imperfect interface conditions. The first type involves a
jump in the warping displacement, the other in the shear traction. _ o(0)= ¢ a= l
The jump quantity is characterized by a scalar interface parameter 1-al’ \/(f% rg)z, 2|2(ri+ r§)+ |4
which measures the degree of the imperfect bond. Understanding
the degree of imperfect bonding on the torsional rigidity is essefir which z=x+iy and {=pe'?. The mapping functior(4) will
tial in designing compound bars under torsion. The study of theap the circled” andC in the z-plane onto concentric circleg,
effect of imperfect interface in torsion problems seems to be firghd vy, in the ¢ plane with radiip, andp,(p;<p,). Specifically,
explored by Lipton[2], in which the spring-type interface, de-the regionS; will correspond to the circler; :|{[<p; and S, to
scribing a jump in the warping displacement, was employed the circular ringo,:p,<|¢|<p, (Fig. 1), where
find the optimal fiber configurations for the torsional rigidity. Ben-

(4)

veniste and Chefil] later showed that imperfect interfaces can be Vi+4ria®—1 1+4r5a?—1
used to design so-called “neutral inhomogeneities” in torsion pP1= 2r a2 v P2= 2r,a’ (5)

problems. These are cylindrical inhomogeneities which can be
introduced in a host bar without disturbing the warping function 2.1 An LS-type Interface. For the LS-type interface, the
and possibly the torsional stiffness of the host bar. The preséntundary and interface conditions need to be fulfilledggyand
work is concerned in providing a most typical benchmark solup, are (1) and(2). Let ¢ be the function conjugate t@ so that
tion: an eccentric reinforcing bar with an imperfect interface in a
circular cylinder. The solution of the same boundary value prob- de dy de  dy .
lem with perfect bonding conditions was first obtained by Vekua dn ds' ds  dn ®)
and Rukhadzg3] (see alsd4]). We mention that in the context of ] )
heat conduction, rigorous derivations of the interface conditiof!d on the contouF” andC. In terms of conjugate functions, Eqs.
have been given by Sanchez-Paleni@ and Pham Huy and (1) and(2) become
Sanchez-Palenci®]. g+ ¢ _ _ _ i t

The displacement field of the Saint-Venant torsion is character- #2~ 97 €ONS ler mathe= pathr = (pa= pa) g+ constr, (7)

ized byu,=—9yz, u,=9xz andu,=de(x,y), whered is the d2 dy, dy
angle of twist per unit length of the bar andis the warping Ml—(¢1—g):—§(—— —l) ,
function to be determined. Equilibrium condition suggests that ds” dndn/f,
is harmonic throughout the cross section of the cylinder. A L )
Traction-free boundary condition on the lateral surface of the C)M\[here the functiorg is defined as
inder gives 1, dg
g=5(x"+y%), —v-n=_c. (©)]

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF _ ; i ;
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Let F(2)=¢+iy be the complex torsion function and 16¢/)

CHANICS. Manuscript received and accepted by the ASME Applied Mechanics DF ¢ +1¢ be Fhe same fUnCtion in theplane. Letf, '?mdfz be the
vision, Oct. 4, 2000. Associate Editor: D. A. Kouris. values of this functions imr; ando,. Then one will have
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Y2
Fig. 1 Mapping from the eccentric cylinder to a circular compound cylinder
e , [ea=(1=N)ciakfa T —na'by
f1(0)= 2 (a+ibes, in oy, (= T !
k=0 (9) (14)
* , [ca—(1-N)cgJa t=nby
faf)= 2 (a+ibpe, in o, PR I-of pi

— — 2 H
wherea, , b}, a], andb] are some unknown real constants to b&hereA=pu;/u,, a=(p1/p;)* andc, andc, are the distances
determined. Letting = pe' in (9) one finds of the centers of" andC from the origin given by

S ; ko Ci= a0} C,= a5 (15)
l/f1=b0+k21 (ay sinké+by coskd)p”, in oy, o l_l—azpf' 2_1—a2p§’
% so thatl=c,—c;. In summary, one obtains
Yo=bi+ 2, [(p'ay—p "’ ysinkd -
k=1 K
¢1(p,0)=— 2, bjp*sinke, (16)
+(pkb[<’+p‘kblk)cosk0], in o,. k=1
To proceed, we note that due to the conformality of the maﬂﬁ oy and
ping function there follows w
d| |d| d d dZ d 1 2(p,0)= 2, (b7l p?~by)p*sinke, a7
ds|, " |dzlpde ' dn|,|dzjdp ) -

where, by virtue of(4), one can show that in o,. The only unknown coefficients, are determined from the

relations
é’ ’ - ’
§, =1 2ap coso+a’p?. (12) —a[(k+1)byq+(k—1)p1 %01 p1p1/€
K
Further, it was shown that the series converges absolutely for -1 2 2 1-ver |
<1/a ([1]) + kpl (1+apl)ﬂ'1/§+(1+)\)ﬁk_ bk
2 * 1—vak 14+ aX
p 1 K k-1
gzrazpz §+k21 akkaOSk9 EW(p,ﬂ). (13) _apl/-l“llf—i_(l—i_)\) l—ak CZ—FVI 1_ak a , k=1,
Now substituting(10) and (13) into (7), using (11) and (12), (18)

provides constraints for the determination of the unknown coeffinere y= (1, — u1)/(y+ 11). The recurrence relation dfl8)
cients. Specifically, we found that,=a;=a”,=0, ay=ag=b; constitutes a linear set of algebraic equations with an infinite num-
=bg=0 and ber of unknowns, which can be resolved by truncation at any
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desired order. By letting £-0, the system can be exactly solvedlable 1 The value T/ T, versus the interface parameter £or 7
without any trunction. In this case, the coefficieiisreduce to

the simple form cory Tus/Te Ths/Te

.726985 1.0

1+ aX 0.01 738333 1.00091

bk—cza" L kak—l, k=1 (19) 0.1 .809527 1.00897

1-va 0.5 .913686 1.04196

1.0 .948702 1.07813

which exactly agrees with the result of Muskhelishyi. 5.0 .987909 1.27869

10 .993816 1.45879

2.2 An HS-Type Interface. For the HS-type interface, the 100 l-899369 4.04919
[e] [oe]

conditions satisfied byp; and ¢, are (1) and (3). In terms of
conjugate functions these can be written as

dn dn r

r,=g+const|c,

o)  Dg'=- 5£Fso1(xdx+ydy>
’ 1 2,2
r =3 ed(X“+y)=— ¢1(p1,0)dW(py,6),
r 71

Again we employ the Laurent serig€40) in (20), using the
relations(13) and(11). This will provide conditions for the deter-
(13) and(11) p D@ = fﬁ ©2(p2,0)dW(p,,0)+ 3€
Y2

d
Mt — podt (o= pe)g= 77%(9* )+ const
(26)

¢2(p1,0)dW(py,0),

mination of the unknown coefficients. The final expression for the ~© ~— "

warping functionp; remains the same 4%6) in o4, andg, as ) ) )
which can be evaluated usiri0), (16), (17), and(21). Particu-

*cak Y (pylp)K—1]— [(p1/p) %+ a¥b]] larly, for the LS type of interface, the torsional rigidity of the
es(p,0)=2, p¥  compound bar is
k=1 l+a
T2
xsinke), (21) Tis=— [r3+ (A =Dri(ri+4c))]
in 0. The unknown coefficients, are determined from the re- * kb,
lation +2muap? N D a1+ hey)
— oK
7k(py 2+ @%)pa gt (N+ 1) “ | bic— @l (k—1)py 20}y S s k0D
@ x 2, a2 ——cfl. (27)
=] 1-a" (a°-1)
+(k+1)by /
( cralpal i For the HS type of interface, one additional tefimneeds to be
‘ —vaX k1 evaluated. In doing this, one rewritds in term of conjugate
=pp@pus+(N+1) Cz_k_1+a + vl |a k=1. (22) function as, using8),
, , : : d(g—y) dg
Again, the system of22) constitutes a linear set of equations for T.=7 . —2ds. (28)
the unknownsh;, that need to be solved by a truncation. For the ~dndn

perfect bonding casér=0), the unknownsb; can be exactly Using the relationg10)—(11) we can show that
solved which again recover the for(h9).

0

To=—2pmpa(ci+cyla)(abl+1)+ pme, D, (2+k
k=1

3 Torsional Rigidity and Numerical Illustration

_ _ _ +2c,a)a" 1p Ykp,(1+a2p?)(cia* t—by)—a[ (k—1)
To illustrate the effect of imperfect interface we evaluate the

torsional rigidity of the compound section. The torsional rigidity X(crak 2—b}_,)+p3(k+1)(c,a"— by, )]} (29)
of the cross section can be shown(Ets) The torsional rigidity of the compound bar with HS interface
2 can be derived as
E (1 e+ DY)+ T, (23)
k= Tus=Te+ mupl (r3f2+2c3r2)+ (N —1)(rf/2+c2r3

whereT.=0 for an LS-type interface and

©

1-va k=1 2kps
Tc=j (Ve stv-s)(v-9]ds, (24) —a2, (C2 T+ak M k&b
. . - kaZp3
for an HS-type interface. 1(R3), 1 is the polar moment of intertia —2c§2 Bk (30)
of the regionS, with respect to the origi©, and k=1

As a numerical illustration, we consider the following example
D(k)_J J( a*"kfy%)d xdy, (25) N Whichr,=2.0,1,=5.0, ;= 1.0, s1=2.0,1=2.8. In the case
that the interface is perfectly bonded, the torsional rigidity is
given in Muskhelishvili([4], Eq.(140a.14). For convenience, we
To proceed, one may rewrif@5) as, applying the Green’s theo-denote the quantity by, . For é=c0 or =0, our converged result
rem, for a 20-term approximation give$p=1789.63, which agrees
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with that of [4]. As expected, the warping displacement is antReferences
Symmemc W'_th reSPeCt to the hO_I’IZOﬂtal line and _thuso onthe [1] Benveniste, Y., and Chen, T., 2001, “On Saint-Venant Torsion of Composite
horizontal axis. To illustrate the influence of the interface param-" gars with Imperfect Interfaces,” Proc. R. Soc. London, Ser457, pp. 231—
eter on the effective torsional rigidity, numerical values of the 255,
factors T g/Tp and T s/Tp are given in Table 1. The numbers [2] Lipton, R., 1998, “Optimal Configurations for Maximum Torsional Rigidity,”
indicate that for the totally debonded case0 the torsional rigid- Arch. Ration. Mech. Anal.144, pp. 79-106.
ity is 27 percent less than that of the perfect one, whereag; for [3] Vekua, I. N., and Rukhadze, A. K., 1933, “The Problem of Torsion of a
> 10 the torsional rigidity will increase drastically to infinity. The g'm”'z’g?gy'g‘;:" Reinforced by Additional Circular Rods,” Izv. A. N. SSSR,

. . . . , Pp. — .
phySICal behav.lor and mathematlpql explanatlon of the latter phef4] Muskhelishvili, N. 1., 1953 Some Basic Problems of the Mathematical Theory
nomena was given {{1]). Finally, it is mentioned thgt our result of Elasticity Noordhoff, Groningen.
is also verified with a recently proven theorem by Liptp2], Eq. [5] Sanchez-Palencia, E., 1970, “Comportement Limite d'un Probleme de Trans-
(1.7)) and Benvensite and Chefil], Egs.(4.19,4.20). Specifi- mission a Travers une Palque Faiblement Conductrice,” Comp. Rend. Acad.
cally, the theorem states that for the considered compound cross- Sci. Paris A270, 1026-1028.
section, if the interface is of LS type and that the interface param{6] Pham Huy, H., and Sanchez-Palencia, E., 1974, “Phenomenes de Transmission
eter has a certain constant value, then the torsional rigidity a Travers des Couches Minces de Conductivite Elevee,” J. Math. Anal. Appl.,
remains a constant quantity valid for any position of the circular ~ 47 Pp- 284-309.
bar.
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Discussion: “Shear Coefficients for o 1 a_X+V_x2+('z—y)y2) o
Timoshenko Beam Theory” Taldwix 2 2
(Hutchinson, J. R., 2001, ASME J.
Appl. Mech., 68, pp. 8792 1 e

fzzm W+(2+v)xy). (2c)

N. G. Stephen
School of Engineering Sciences, Mechanical Engineering,

University of Southampton, Highfield, In the above, the notation is largely the same as that of Hutch-
Southampton SO17 1BJ, England inson except that Love’s notatidf2]) has been employed for the
In a recent article, Hutchinsofil] employed the Hellinger- beam cross-sectional coordinates, by replagibg x, andz by vy,
Reissner variational principle to construct a beam theory of TR [1]; z is then the beam axial coordinate. The motivation of
moshenko type, together with a new expression for the inherdtititchinson appears to be the construction of a theory in which the
shear coefficienk, as shear coefficient takes on the “best” value; for beams of circular
—2(1+) and thin rectangular cross section, these are widely accepted to be
S — (1) «=6(1+v)?(7+12v+41?%), and k=5(1+v)/(6+5v), respec-
ﬁ C,+ V( 1— '_X) tively. The evidence to suggest that these values are “best” comes
If, 4 Iy from comparison with available “exact” elastodynamic analyses
and, to a lesser degree, from experiment, and is discussed in
[1,3,4.
Expression(1) derived by Hutchinson is exactly equivalent to
Co=~ fJ{V(XZ_yz)flJFZVX y fot2(1+w)(f1+1)}dxd y one derived by the present author and Prof. Mark LeviriSof]
(2a) some two decades ago, which(Ref. [3], Eq. (20))

K=

where

—4(1+v)217
- , x2=y?\ [axy wx® [2—v , ax '
2(1+v)A X(x+xy9)dx dy+2v(1+v)l (1,—1,)+vA —+ — vy +xy| —+(2+v)xy| jdx dy
2 X 2 ay
3
I
It is remarkable that three quite different approaches should g of

lead to the same expression for the coefficient. Hutchinson’s use ff (&_x_ W)dx dy= é (f dx+gdy), (4)

of Hellinger-Reissner overcomes the compromises inevitable in a

beam theory, allowing “best” choices for both stress and displacend a knowledge of the normal derivative of ttiarmonig flex-
ment fields, which may be incompatible. [d], Stephen and ure functiony on the boundary of the cross section, that is
Levinson adapted the procedure of Cowfddr but argued that the )

stress distribution within a beam performing long wavelength d_X:_(KJr(z_V) 2
flexural vibration would be approximated better by gravity force dn 2 2 y
body loading(see Love 2], Chapter 18 rather than tip loading of (5)

a cantilevered beam, as assumedsh The former has shearing The key step is recognition that the term within Hutchinson’s

force varying linearly with axial coordinate, while for the latteryeficientc, involving the area integral of the sum of the squares

shearing force is constant. i8], the coefficient was obtained of the termsf, andf,, in turn involves the area integral of the
from the curvature correction during bending, again due to gravim (;y/9x)2+ (dy/ay)2 Transformation of such terms within
loading (again see Chapter 16 of Love potential theory is well documented; see, for example, Sokolni-

Demonstration of the equivalence of the two formulas is somgeff [6]. For the present problem an outline of the procedure is as
what lengthy, and is based upon usage of Green’s formula  follows:

cogx,n)—(2+v)xycogy,n).
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construct values appear to be the more widely used; it is to be hoped that
investigators will in future make greater use of these “best”

ax ?x [ax ax
v 2y I _ 2 I 2| 2 values.
| (XHxY9) 8X} (x+xy9) -7 +(ax+y o (6a)

P x 72 X References
— [ (x+xyd) = |=(x+xy?) —5 +| — + 2xy) (6b) [1] Hutchinson, J. R., 2001, “Shear Coefficients for Timoshenko Beam Theory,”
ay d d ay ady ASME J. Appl. Mech. 68, pp. 87-92.

[2] Love, A. E. H., 1944 A Treatise on the Mathematical Theory of Elasticity
Dover, New York.
[3] Stephen, N. G., 1980, “Timoshenko’'s Shear Coefficient from a Beam Sub-

and add, noting thay is harmonic, to give

(X Xy ) ﬁX (X Xy )_ jected to Gravity Loading,” ASME J. Appl. Mech47, pp. 121-127.
IX (yy [4] Stephen, N. G., and Levinson, M., 1979, “A Second Order Beam Theory,”
Journal of Sound and Vibratio6,7, pp. 293—-305.
ax 2 ax 2 ax ax [5] Cowper, G. R., 1966, “The Shear Coefficient in Timoshenko Beam Theory,”
=|£ | +y>—=+2xy—. (7) ASME J. Appl. Mech. 33, pp. 335-340.
X ay IX ay [6] Sokolnikoff, I. S., 1956,Mathematical Theory of ElasticityMcGraw-Hill,
New York.

Integrate over the cross section, and transform the left-hand side
(LHS) of the above using Green’s formula, to give

dy ..

LHs= fﬁ(’(“yz)ﬁds ® Closure to “On Shear Coefficients for
where direction cosines cosf)=dxdn=dy/ds and cosy,n) Timoshenko Beam Theory”
=dy/dn=—dx/ds have been employed.

Substitute for the normal derivative gfaccording to(5), and (2001’ ASME J. Appl MeCh" 68’
convert back to an area integral to give p. 959)

ax )
— dx dy+ +2 dxd .
JJ[(ﬂx ] et fJ(y Yoy /Y 3. R. Hutchinson
Department of Civil and Environmental Engineering,

—ff2(1+ v)X(x+xy?)dx dy College of Engineering, University of California,
One Shields Avenue, Davis, CA 95616-5294

ay

2+ )xy Xaxd
(2+v)xy gy 4xdy
G 2—
- >t Yo o dxdy In his most important point Professor Stephen is completely
correct. That is, his shear coefficient and mine are identical. | was
4 Svy L, [2=v| , dx d g) aware of his work when it first came out and discounted it because
- T Xyt y-jaxay. () it was derived by solving a static problem for a specific type of

Next, expand Hutchinson's expression for coeffici€y, and
substitute the above, when one finds

loading. It implied that the shear coefficient for the static problem
was a function of the type of loading and, further, that by choosing
the right type of static loading one could find the best value of the
shear coefficient for dynamic loads. As it turns out both of these
C,= ff x+xy9)dx dy implications are correct.
Professor Stephen states, “The motivation of Hutchinson ap-
v(x°—y?) [ dx 2—p pears to be the construction of a theory in which the shear coef-
ff 4 ( - (—) yz)dx dy ficient takes on the ‘best’ value.” | did not mean to convey that
(1+v) 2 2 . : L . .
impression. My motivation was simply to construct a simple, con-
vxy [dx sistent, dynamic theory which did not require guessing a shear
+ J Jm W+(2+ v)xy)dx dy. (10) coefficient. This simple consistent theory allowed me to find an
expression for the shear coefficient in the Timoshenko beam
Lastly substitute the above into E@) to give expressiofi3). Not theory. That this shear coefficient agreed with the “best” values
surprisingly, the values of the coefficient for the circular crossimply validated my approach.
section, both solid, hollow and thin-walled, and for the elliptic Professor Stephen states, “the values of the coefficient for the
cross section calculated fit], are identical to those given [8,4].  circular cross section, both solid, hollow and thin-walled, and for
Similarly, Hutchinson’s expression for the rectangular cross settie elliptic cross section calculated [it], are identical to those
tion reduces to the “best” value ok=5(1+v)/(6+5v) as one given in[3,4].” What he doesn’t note is that the expressions for
approaches plane stress conditions. the rectangular cross section in both his and my paper also pro-
A further very interesting feature d¢fl], Figs. 3 and 4, is the duce identical results. He further comments on the fact that the
possibility of the shear coefficient taking a negative value for thehear coefficient goes to zero for the rectangular cross section.
combination of large width to depth ratio, and for large PoissonActually, as shown in my Fig. 4, it is the reciprocal of the shear
ratio. The effect of a negative coefficient would be to stiffen theoefficient that goes to zero which means the shear coefficient
structure, leading to a natural frequency higher than that predicteduld have a pole at that point. Professor Stephen’s conclusion
by Euler-Bernoulli theory. However, as one would not normallyhat the beam is stiffened with an increase in width is correct. | do
employ Timoshenko theory for a beam having a large width teot understand, however, his remark that, “one would not nor-
depth ratio, this result may turn out to be of little importancemally employ Timoshenko theory for a beam having large width
Nevertheless, the physical implication of a possible negative c depth ratio.” For a Poisson’s ratio of 0.3 the reciprocal of the
efficient requires further consideration. shear coefficient goes to zero at a width to depth ratio of about 3.
Finally, it is noted that while the above values for the coeffiThis is definitely within the range | would expect Timoshenko
cient may be widely accepted as the best, paradoxically Cowpeit®ory to be applied. Also the lowest natural frequency would
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probably occur(depending on boundary conditiorebout a neu- YA x4 L3 L2 YA yv

tral axis in the width direction. | should probably also note that the ¢= ﬁ( - ﬂJr 5 T) ﬁcfr ﬁ(lf ly)
shear coefficient is very sensitive to the assumed shear stress dis- z z z

tribution. If one were to assume a simple parabolic shear stress X2

distribution through the thickness of the rectangular beam one X | Lx— 7). 3)
would get a shear stress of 5{%)/6+5v) independent of the

aspect ratio.
In my paper | also had a small section on static problems. In
that section | found expressions for a static shear coefficient found . . group of terms in Eq(3) corresponds to the Euler-

by comparing solution of my equations with the elementary beag]ernoulli beam solution and the second group of terms corre-

solution including shear deformation. The comparison was don . . S
for a tip loaded cantilever. Since Professor Stephen’s work incfi.fsonds to the shear deformation solution. This is the same expres
on that would result from simple beam theory with shear

cates that the coefficient depends on loading | decided to inves}i- S S . .
gate a beam loaded under it's own weight. To accomplish this ?formatlon if the shear coefficient were the expression shown in
inserted a new termyv into the integral iri my Eq(28) and my paper as Eq57). If one uses the |ntegra_1ted average dlsplace_-
dropped all the time dependent terms. The teriis thé specific ment, as was done by Professor Stephen, instead of the center line
weigflt of the beam andpis the displac.ement?; th}&direF::tion displacement then one gets the shear coefficient which he found,

Proceeding in the same way as in the paper, | came up with t}h]gt is, my Eq(41) and his comment E_q$1) and(_3). Thus, even
following set of equations, in“my approach the shear coefficient is a function of the loading,

and for a gravity load the resulting shear coefficient is the same as
vA the dynamic coefficient. Similar equations b and (2) above

'+ e=0 (1) could be developed for any type of loading on a beam and thus
z eliminate the need for a shear coefficient entirely.
4 v | recently presented a paper entitled “Shear Coefficients for
Y ="+ T, Y- ﬁ(lz* l,)=0. (2)  Thin-Walled Timoshenko Beams” at the Third International Sym-

posium on the Vibrations of Continuous Systems, July 23-27,
These equations are solved by integrating the first three times amb1 at Jackson Lake Lodge, WY. In that paper | considered all
inserting the result into the second and integrating two mogRe thin-walled cases treated by Cowper plus two additional cases.
times. The boundary conditions for a cantilever fixeaat0 and As in all other cases the “best” shear coefficient agreed with
free atx=L are (0)=0, ¢(0)=0, ¥'(L)=0 and #"(L)=0. Cowper’s values only for Poisson’s ratio equal zero.
Since there are five constants of integration another condition isAs to Professor Stephen’s final remark, “it is noted that while
needed. That condition is, for the axial location at which the shegiie above values for the coefficient may be widely accepted as
is zero, the slop&/ equals the slope of the center line deflectiomest, paradoxically Cowper’s values appear to be more widely
¢'. Thusy(L)=¢'(L). The expression for the center line dis-used,; it is hoped the investigators will in the future make greater
placement is then use of these ‘best’ values,” | fully agree.
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